

# The University of Manchester

# Designing and applying water resource planning approaches in the UK

Ivana Huskova, Evgenii Matrosov, Julien Harou

23 January 2017, Exeter

Joint EPSRC workshop organised by the

EPSRC networks **<u>ReCoVER</u>** and <u>**BRIM**</u>

Contact:

Julien Harou, Water systems group, The University of Manchester, julien.harou@manchester.ac.uk, +44 7878 465 007

### Water resource planning

- WRMPs, drought plans can include:
  - new supply options
  - new demand management schemes
  - new policies (e.g. reservoir release rules)
- Even if just a few options, number of combinations large
- How can we identify the most promising plans? How to reach a shared vision on which to choose?

### Economic optimisation of the supplydemand balance

Currently in England: search for least-cost set of investments over planning period that maintain the supply-demand balance ('EBSD approach'):

- 1. Split region into independent interconnected supply zones,
- 2. Define cost curve for all options in each zone, and transfers between zones (i.e., identify yields-DO, capital costs, fixed & variable operating costs of all options)
- 3. Identify annual demand projections by zone
- 4. Find least-cost mix of options and schedule that meet reliability requirements

#### Investment options by zone



# Limitations of current least-cost approach

- Monetised benefits only: must monetise all societal goals if they are to be considered
- **Conservative**: seeks to prevent worst supplydemand annual imbalance, rather than work well across a range of plausible futures
- **Potentially inaccurate**: non-linear interactions between schemes not considered
- Many similar solutions: many different portfolios are nearly least-cost

Diversity in the frequency of WRSE **transfer** scheme selection amongst the 240 near-optimal solutions within 10% of the optimum



Transfer scheme

- Each line is one of the 240 near-optimal solutions
- Darkest lines are closest to least cost
- Densely colored transfers: selected in all or most 240 near-optimal solutions

#### Is economic optimisation the ideal tool?

- Results indicate that economic criteria alone is not sufficient to coalesce around one plan
- Because of cost inaccuracy, nearly least cost portfolios are roughly of equal worth
- There are too many intangibles to consider to select one
- What if we could:
  - Address EBSD limitations
  - Visually assess least-cost plans, and the intangibles too ...

# Planning based on scenario simulation approaches

- Rather than only tracking the annual supplydemand balance ...
- Why not use integrated water resource management system models that track multiple engineering, environmental, economic and social performance metrics
- Link system simulator to decision-making under uncertainty approaches:
  - 1. RDM
  - 2. Robust search

### Case study – Thames Basin, UK

Stressed water resource system with population over 13 million including London



What mix of supply and demand interventions (portfolio)? At what capacity?

# What type of solution are we searching for?

Our objectives:

- **Capital cost** Annualized capital cost of implementing new supply and demand options based on option's design life (£m)
- Supply deficit Average annual experienced by London WRZ (%)
- **Supply resilience** *Maximum duration failure*\* (weeks)
- **Supply reliability** Frequency of failures\* (%)
- Eco-deficit Difference between natural and simulated low flows (%)
- **Energy cost** Annual average operating cost (£M/a)

Our constraints

- Levels of Service (max. frequency of imposing demand restrictions)
- Mutual exclusivity of some supply options

Single and two objective optimization; Currently UK utilities find a) they should consider b)



#### Case study – Thames Basin, UK



Direction of preference

#### Case study – Thames Basin, UK



#### Six objective trade-offs





#### How do investments map to the trade-offs?

Automated filtering was performed under historical (left panel) and multiple future scenarios (right panel)



Robust optimisation works nicely, but can we give recommendations about when to put assets in?

- Time horizon of 50 years (2020 2070) with transient demand and energy price
- Supply uncertainty Future Flows scenarios
- Interventions introduced in 5 year planning periods (2020, 2025, 2030, ...)
- Construction lead times considered
- Interventions are "turned off" after they reach design life

### Future Flows scenarios (Prudhomme et al., 2013)

11 scenarios of transient hydrological river flows for the UK

- Derived from transient climate projections from the Met Office Hadley Centre Regional Climate Model (HadRM3-PPE-UK)
- Scenarios vary in magnitude of flows, and duration and timing of extreme events



## Worst drought – afixa scenario

The most extreme event in the scenario ensemble occurs during 2040-2045 in afixa scenario



# Challenges

- The major drought influences the scheduling
  - Random resampling of the original time series in 5 year blocks (Local Block Bootstrap)
  - Ensure even distribution of drought within time horizon
  - Generated 4 ensembles of 110 future hydrology scenarios from the original 11 Future Flows scenarios and performed search with each
- Problem formulation influences the scheduling
  - Average
    - Similar sets of results across ensembles but investments in majority of plans delayed ("do nothing" in first 10 years)
  - Worst
    - Different sets of results across ensembles
  - Discounted performance (worst 5 year performance)
    - Similar sets of results across ensembles and majority of plans implement demand management interventions within the first 10 years

# Discounting

- Discount non-financial performance (resilience and ecodeficit)
  - Discount rate 4.5% (as for cost metrics)
  - 4 week long failure within next 10 years higher priority than 7 week failure occurring in 25 years time (new information, technology, etc. may become available)
- Take the worst 5 year performance value



# Final problem formulation

- 12 possible supply and 5 demand management schemes
- 6 objectives
  - Total discounted capital cost
  - Total discounted energy cost
  - Discounted engineering resilience (maximum duration of failure imposing temporary use restrictions)
  - Discounted environmental eco-deficit difference between natural and simulated low flows
  - Robustness Indicator LoS3: percentage of scenarios maintaining allowed frequency of imposing temporary use restrictions (Level of Service 3)
  - Robustness Indicator LoS4: percentage of scenarios maintaining allowed frequency of imposing standpipes (Level of Service 4)
- Constraints mutual exclusivity of some supplies

# Final approach

- 4 ensembles of 110 future hydrology scenarios (generated from the original 11 Future Flows scenarios)
  - Investigation of bigger scenario ensemble size (220 scenario and 330 scenario ensembles) showed no further improvement in the similarity between the 4 sets of plans
- Many-objective search with each ensemble and discounted performance – 4 sets of Pareto-optimal plans
- Combined the 4 sets into a single final recommended set
  - Simulation of the 4 sets of plans against 4\*110 scenarios (combined 4 ensembles) and non-dominated sorting

### Final recommended set



#### Schedule trajectories



## Deliberation of preferred plan



#### Applying the thresholds and identifying 5 plans with similar schedules in the first decade



#### Performance comparison of the 5 plans



# Combining the 5 plan schedules into a single coherent plan



## **Thames System Findings**

- Based on preliminary results (these may change as system simulation model improves and/or different improved performance metrics are considered)
- Reservoir and Pipe repair campaign are likely low-regret options (provide benefits even in the absence of climate change scarcity)
- All demand management options in London WRZ are selected by search in all Pareto optimal sets (multi-scenario case)



#### Robust Search: Discussion, Future work

#### Benefits

- Suggest alternative plans which are equally 'optimal', identifies tradeoffs between them
- Identifies robust plans (assets, policies) given many plausible futures
- RDM can be used to further stress test robustness of chosen plans over a wider set of futures

#### Limitations

Computational burden limits number of scenarios considered in robust search

#### Future work

• Adaptive options (options are adaptive trajectories over the time horizon)

## Thank you, Ivana Huskova

Contact: Julien Harou, Water systems group, The University of Manchester, julien.harou@manchester.ac.uk, +44 7878 465 007