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Water resource planning

* WRMPs, drought plans can include:
— new supply options
— new demand management schemes

— new policies (e.g. reservoir release rules)

* Even if just a few options, number of
combinations large

* How can we identify the most promising
plans? How to reach a shared vision on which

to choose?



Economic optimisation of the supply-
demand balance

Currently in England: search for least-cost set of
investments over planning period that maintain the
supply-demand balance (‘EBSD approach’):

1. Split region into independent interconnected supply
zones,

2. Define cost curve for all options in each zone, and
transfers between zones (i.e., identify yields-DO,
capital costs, fixed & variable operating costs of all
options)

ldentify annual demand projections by zone

4. Find least-cost mix of options and schedule that meet
reliability requirements
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Investment options by zone
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Limitations of current least-cost
approach

Monetised benefits only: must monetise all
societal goals if they are to be considered

Conservative: seeks to prevent worst supply-
demand annual imbalance, rather than work
well across a range of plausible futures

Potentially inaccurate: non-linear interactions
between schemes not considered

Many similar solutions: many different
portfolios are nearly least-cost



Diversity in the frequency of WRSE transfer scheme selection amongst
the 240 near-optimal solutions within 10% of the optimum
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Transfer scheme

e Each line is one of the 240 near-optimal solutions
* Darkest lines are closest to least cost
* Densely colored transfers: selected in all or most 240 near-optimal solutions




Is economic optimisation the ideal tool?

e Results indicate that economic criteria alone is not
sufficient to coalesce around one plan

e Because of cost inaccuracy, nearly least cost
portfolios are roughly of equal worth

* There are too many intangibles to consider to select
one

e What if we could:
— Address EBSD limitations

— Visually assess least-cost plans, and the
intangibles too ...



Planning based on scenario simulation
approaches

e Rather than only tracking the annual supply-
demand balance ...

* Why not use integrated water resource
management system models that track multiple
engineering, environmental, economic and
social performance metrics

* Link system simulator to decision-making under
uncertainty approaches:

1. RDM
2. Robust search



Case study — Thames Basin, UK

Stressed water resource system with population over 13
million including London
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What type of solution are we
searching for?

Our objectives:

Capital cost — Annualized capital cost of implementing new supply and demand
options based on option’s design life (Em)

Supply deficit — Average annual experienced by London WRZ (%)
Supply resilience — Maximum duration failure* (weeks)

Supply reliability - Frequency of failures* (%)

Eco-deficit — Difference between natural and simulated low flows (%)

Energy cost - Annual average operating cost (EM/a)

Our constraints

Levels of Service (max. frequency of imposing demand restrictions)
Mutual exclusivity of some supply options



Single and two objective optimization; Currently UK
utilities find a) they should consider b)

99.29

AN

Reliability
(%)

99.6

100+<

Least Cost solution

(a)

9.1

36.8

64.4

Annualized capital cost (Em)

99.2

o /
@
100 Vg0
9.1

AN

® | east Cost solution

® Perfect reliability solution

(b)

36.8

64.4

Annualized capital cost (£Em)

—— Direction of preference



Case study — Thames Basin, UK
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Case study — Thames Basin, UK
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Six objective trade-offs

Eco-deficit (%)
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How do investments map to the trade-offs?

Automated filtering was performed under historical (left panel) and

multiple future scenarios (right panel)
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Robust optimisation works nicely, but
can we give recommendations about
when to put assets in?

Time horizon of 50 years (2020 — 2070) with
transient demand and energy price

Supply uncertainty — Future Flows scenarios

Interventions introduced in 5 year planning periods
(2020, 2025, 2030, ...)

Construction lead times considered

Interventions are “turned off” after they reach
design life



Future Flows scenarios (rudhomme et al. 2013)

11 scenarios of transient hydrological river flows for the UK

Derived from transient climate projections from the Met Office Hadley Centre
Regional Climate Model (HadRM3-PPE-UK)

Scenarios vary in magnitude of flows, and duration and timing of extreme events
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Worst drought — afixa scenario

The most extreme event in the scenario ensemble
occurs during 2040-2045 in afixa scenario
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Challenges

 The major drought influences the scheduling

— Random resampling of the original time series in 5 year blocks (Local Block Bootstrap)
— Ensure even distribution of drought within time horizon

— Generated 4 ensembles of 110 future hydrology scenarios from the original 11 Future
Flows scenarios and performed search with each

* Problem formulation influences the scheduling

— Average

* Similar sets of results across ensembles but investments in majority of
plans delayed (“do nothing” in first 10 years)

— Worst
e Different sets of results across ensembles

— Discounted performance (worst 5 year performance)

» Similar sets of results across ensembles and majority of plans implement
demand management interventions within the first 10 years



Discounting

* Discount non-financial performance (resilience and eco-
deficit)
— Discount rate 4.5% (as for cost metrics)

— 4 week long failure within next 10 years higher priority than 7 week
failure occurring in 25 years time (new information, technology,
etc. may become available)

* Take the worst 5 year performance value
5years 10vyears 15vyears 20vyears 25 years
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Final problem formulation

e 12 possible supply and 5 demand management schemes
* 6 objectives

* Total discounted capital cost

* Total discounted energy cost

* Discounted engineering resilience (maximum duration of failure —
imposing temporary use restrictions)

— Discounted environmental eco-deficit — difference between natural and
simulated low flows

— Robustness Indicator LoS3: percentage of scenarios maintaining

allowed frequency of imposing temporary use restrictions (Level of
Service 3)

— Robustness Indicator LoS4: percentage of scenarios maintaining
allowed frequency of imposing standpipes (Level of Service 4)

e Constraints — mutual exclusivity of some supplies



Final approach

* 4 ensembles of 110 future hydrology scenarios (generated
from the original 11 Future Flows scenarios)

— Investigation of bigger scenario ensemble size (220 scenario and
330 scenario ensembles) showed no further improvement in the
similarity between the 4 sets of plans

* Many-objective search with each ensemble and discounted
performance — 4 sets of Pareto-optimal plans
* Combined the 4 sets into a single final recommended set

— Simulation of the 4 sets of plans against 4*110 scenarios
(combined 4 ensembles) and non-dominated sorting



Final recommended set
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Schedule trajectories

a) All schedule trajectories on the trade-off curve
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Deliberation of preferred plan
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Applying the thresholds and identifying 5 plans
with similar schedules in the first decade
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Performance comparison of the 5 plans
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Combining the 5 plan schedules into a
single coherent plan
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Thames System Findings

Based on preliminary results (these may change as system
simulation model improves and/or different improved
performance metrics are considered)

Reservoir and Pipe repair campaign are likely low-regret
options — (provide benefits even in the absence of climate change
scarcity)

All demand management options in London WRZ are
selected by search in all Pareto optimal sets (multi-scenario
case)



Other
applications:
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Robust Search: Discussion, Future work

Benefits

e Suggest alternative plans which are equally ‘optimal’, identifies trade-
offs between them

* |dentifies robust plans (assets, policies) given many plausible futures

e RDM can be used to further stress test robustness of chosen plans
over a wider set of futures

Limitations

 Computational burden limits number of scenarios considered in
robust search

Future work

e Adaptive options (options are adaptive trajectories over the time horizon)
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