

Yue-Kin Tsang

Centre for Geophysical and Astrophysical Fluid Dynamics Mathematics, University of Exeter

- exceptionally heavy rainfall in November and December 2015
- <u>26th December</u>

rainfall of up to 120mm fell within 24 hours in the Lancashire and Yorkshire areas \approx average rainfall for the entire month of December (145mm)

Boxing-day floods in Leeds

We can gain some insights by:

- Iooking into past: records of observed precipitation
- Predicting the future: model projection

- data from rain gauges over land stations from 1910 to 2010
- maximum daily precipitation rate at each grid box (station) for each year in the record, $P_{\max}(x, y, t)$
- global-mean surface temperature anomaly $\Delta T(t)$ from 1910 to 2010
- regress $P_{\max}(x, y, t)$ against $\Delta T(t)$, regression coefficient = m(x, y)
- Sensitivity = $m(x, y)/\langle P_{\max}(x, y, t) \rangle_t \times 100\%$
- averaged over the 15° latitude bands (median)

- climate-model simulations using a projected scenario of greenhouse gas concentration into the 21st century (RCP8.5)
- compare results across many different climate models (CMIP5)
- large inter-model scatter in the Tropics \Rightarrow results unreliable!
 - tropical precipitation depends strongly on small-scale processes that are not resolved in model
 - results sensitive to parametrization of these subgrid-scale processes

• atmospheric states: continuous fields governed by differential equations — describe motions on all scales. For example, specific humidity field $q(\vec{x}, t)$: $\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = \kappa \nabla^2 q + S - C$

 weather/climate models: numerical solutions of a discrete version of the governing differential equations on a grid
⇒ cannot describe processes below the grid scale
subgrid-scale processes affect the atmospheric state on large-scales

Parametrization: technique to represent the statistical effects of subgrid-scale processes in terms of the resolved scales

-scale processes

esolution of climate models: horizontal ~ 100 vertical ~ 10 km

- u-trackind-scale processes
- convective cloud $\sim 1 \text{ km}$
- small-scale turbulent mixing $\sim 1 \text{ mm} 1 \text{ m}$
- raindrops $\sim 1 \text{ mm}$
- cloud droplets (form by condensation) $\sim 1 \ \mu m$

numidity of an air parcel:

sation of water vapour

$$Q = \frac{\text{mass of water vapor}}{\text{total air mass}}$$

Contraction of the second

• saturation specific humidity, $q_s(T)$

• $Q = \begin{cases} q_s & \text{if } Q > q_s \\ Q & \text{if } Q \leqslant q_s \end{cases}$ (excessive moisture condensed)

• $q_s(T)$ decreases with temperature T, hence position dependent

lised atmosphere

- domain: $[0,\pi] \times [0,\pi]$, reflective boundaries
- $q_{\max} \exp(-\alpha y)$: $q_s(0) = q_{\max}$ and $q_s(\pi) = q_{\min}$
- resetting source: $Q = q_{\text{max}}$ if parcel hits y = 0
- large-scale cellular flow: $\psi = \sin x \sin y$; $(u, v) = (-\psi_y, \psi_x)$
- small-scale turbulence: Brownian motion

relative humidity
$$= \frac{Q}{q_s}$$

 Observation: divide the domain into small bins and average over parcels in each bin

trization of condensation

ng equation for the specific humidity field q(x, y)

$$\frac{\partial q}{\partial t} + \vec{u} \cdot \nabla q = \kappa \nabla^2 q + S - C$$

Numerical solution on a grid: q
 (i, j, t_n) represents the average of the many parcels within a grid box.

What should be the form of the condensation term C?

coarse-grained:

$$C_{\mathrm{avg}} = rac{1}{ au} ig[\overline{q}(i,j,t) - q_s(j) ig]$$

stochastic:

$$C_{\text{stoc}} = \frac{1}{\tau} \int_{q_s(j)}^{q_{\text{max}}} (q' - q_s) \Phi_0(q'|i,j;t_n) \, \mathrm{d}q'$$

ison of parametrization schemes: relative

napshot of parcels

x

"Observation"

0.5 0.8 0.7 0.6

0.50.40.30.20.10.0

x

stochastic

coarse-grained

y