

Water supply, Energy supply, Food supply, Natural resources, Transport and Critical Infrastructures (Naoki Masuda; network science)

What does Resilience mean to you?:

1. Relatively large "basin of attraction" in dynamics (network or non-network)

2. Functionality of a system (e.g. connectivity of infrastructure network) maintained after some damage to the system (e.g. node removal)

Your Current Research Focus:

- 1. Energy landscape analysis of data
- 2. (temporal) networks. E.g., targeted attack on networks

Key Resilience Research Challenges:

- Judge the resilience or loss thereof from time series data (some work in stat phys / biology though)
- 2. Implication / application of Barabasi's framework of resilience (a Science paper) in engineering domains?

What would good look like?

- 1. Diagnosis of infrastructure (and other) networks. How resilient?
- 2. Design of resilient networks and their implimentations?

3.

ineering and Physical Sciences

ech Council

What are the consequences - Risks?:

Water supply, Energy supply, Food supply, Natural resources, Transport and Critical Infrastructures (Naoki Masuda; network science)

Perceived Barriers?:

Temporal / multilayer networks?

1. 2.	Collaboration between theory and applications Collaboration/cross-talk between different applications (chemical systems, ecosystems, engineering like this, financial systems etc.)	1. 2.	Paucity of data? If implementations turn out to be difficult?
Envisaged Breakthroughs Required:		Who needs to do what?:	
1.	Dynamical system approach (Barabasi et al.) applied to engineering problems.	1.	Different teams (e.g. a water team and an theory team) write a joint paper for mutual understanding and bigger proposals.
2.	Centralised vs distributed systems. Which are more resilient? Trade-offs?	2.	Write a joint review paper (there are already some though). Also find existing notions and methods related to resilience.

