

2018 UK-China Workshop On Water-Wise Cities And Smart Water Systems 11-13 Sep 2018, Xi'an, China

A Catchment-Scale Real-Time Flood Forecasting System Based on Full Hydrodynamic Modelling

明晓东**Xiaodong Ming¹** Qiuhua Liang², Xilin Xia², Dingmin Li³

Research Assistant in Hydrodynamic modelling <u>xiaodong.ming@ncl.ac.uk</u>

 School of Engineering, Newcastle University, UK
 School of Architecture, Building, and Civil Engineering, Loughborough University, UK
 Met Office, UK

Outline

- Background
- High-Performance Integrated hydrodynamic Modelling System (HiPIMS)
- Framework of the flood forecasting system
- Application in Eden River catchment, UK
 - Data preparation
 - Forecasting results
 - Sensitivity to grid resolution
- Conclusions

More and More Disastrous Events

From World Meteorological Organization report, WMO-No. 1123, 2014

Fluvial flood modelling/forecasting

Key challenges

Conventional flood modelling

HiPIMS

<u>High-P</u>erformance <u>Integrated</u> hydrodynamic <u>M</u>odelling <u>S</u>ystem

- Fully 2D depth-integrated governing equations for shallow flow hydrodynamics/other processes
- Numerical schemes
 - 1st-order Godunov-type scheme
 - 2nd-order Godunov-type scheme
- CUDA/OpenCL
 - Cross-platform
 - Cross-architecture
 - Flexible modelling framework
 - Any modern CPUs or GPUs

Smith LS, Liang Q (2013) *Computers & Fluids* 88: 334-343.
Liang Q, Smith LS (2015) *J. Hydroinformatics*, 17(4): 518-533.
Amouzgar R, Liang Q, et al. (2016) *IJOPE* 26(2): 154-160.
X Xia, Q Liang, X Ming, J Hou (2017) *Water Resources Research*, 5

Previous application in Newcastle

Newcastle City Centre: 34km², 2m resolution, ~8M cells Newcastle upon Tyne Surface Water Model (Input from UKMO NIMROD)

28-Jun-2012 17:55 UTC

Modelling versus Reality

Previous application in Fuzhou

Typhoon Megi formed on 22 Sep 2016, caused rainstorm and flooding in Fuzhou

- Domain size: 260 km²
 - Fuzhou and the wider catchment
- Resolution: 2 m
- Cells: 83 millions
- Simulation on 8 x NVIDIA K80 GPUs; two times faster than real time

A new flood forecasting system

Storm Desmond in Eden Catchment

- Catchment area: 2500 km²
- Length of main stream: 145km
- Discharge (at Sheepmount, Carlisle)
 - -- Average: 51.82 m³/s
 - -- Max: 1700 m³/s
- Largest settlement: Carlisle (Population: 75,306)
- Storm Desmond
 - -- Low pressure system (939mb at its lowest) formed on 4th December 2015 and dissipated on the 8th December
 - -- Across the Atlantic Ocean with its centre passing right to the North of the UK

Flood forecasting: Data

- Topography
 - DEM (5m)
 - River cross sections
 - Landuse (5m)
 - Source: Digimap & EA
- Rainfall
 - Numeric rainfall prediction from UKV model (1.5km)
 - Rainfall radar data (1km)
 - Source: Met Office

- Observations
 - River water stage
 - Surveyed flood extent

- Source: EA

Met Office

Flood forecasting: Rainfall inputs

- UKV model
 - Release frequency
 - every 6 hours
 - Lead time
 - 36 hours
 - Spatial resolution
 - 1.5km
 - Time resolution
 - 5min

• Storm Desmond: average rainfall rate at Eden Catchment

Flood forecasting: Rainfall input (Desmond)

Rainfall radar (1km)

Weather Prediction (1.5km)

Flood forecasting: Model set up

- Resolution
 - 50m; 949,020 valid cells
 - 30m; 2,636,264 valid cells
 - 20m; 5,937,636 valid cells
 - 10m; 23,714,108 valid cells
 - 5m; 94,856,432 valid cells
- Parameters
 - Manning coefficient
 - Infiltration coefficient

Flood Forecasting: Surveyed flood extent

• Surveyed flood Map in Carlisle due to Storm Desmond

• 50m resolution

• 10m resolution

• Comparison between different resolutions

Nash–Sutcliffe					
efficiency coefficient					

	50m	30m	20m	10m	5m
Great Corby	0.2657	0.7920	0.8837	0.9500	0.9603
Linstock	-0.3136	0.8583	0.8619	0.9327	0.9300
Sheepmount	0.3111	0.6346	0.7902	0.8472	0.8121
Average	0.0877	0.7616	0.8453	0.9100	0.9008

- Sensitivity to simulation resolution
- Trade-off between numerical accuracy and efficiency

Resolution (meter)	Number of Cells (million)	Event duration (hour)	GPU Device	Computing time	Lead time
50	0.949	36	4 * NVIDIA K40 2 * NVIDIA K80	6.5min	35.89h
30	2.636	36	4 * NVIDIA K40 2 * NVIDIA K80	21min	35.65h
20	5.938	36	4 * NVIDIA K40 2 * NVIDIA K80	1h 30min	34.50h
10	23.714	36	4 * NVIDIA K40 2 * NVIDIA K80	15h 45min	20.25h
5	94.856	36	8 * NVIDIA K80	18h 50min	17.17h

• Uncertainty

Nash–Sutcliffe coefficients for simulations with disturbed rainfall (against radar rainfall)

	+10%	-10%	+20%	-20%
Great Corby	0.9734	0.9798	0.8792	0.9276
Linstock	0.9670	0.9695	0.8594	0.8826
Sheepmount	0.9734	0.9782	0.8849	0.9213
Average	0.9713	0.9758	0.8745	0.9213

- Visualization in public digital map service
 - Google earth
 - OS Map

Conclusions

- HiPIMS is able to accurately predict flood processes on large catchments.
- NWP data can drive HiPIMS to provide satisfactory prediction of inundation.
- Uncertainty arising from rainfall input is NOT propagated or amplified to the simulated water level and flood extent.
- HiPIMS provides an effective tool for real-time highresolution flood forecasting.
- Massively parallel hydrodynamic models may become the new norm of catchment-scale whole-system flood modelling and forecasting.

Thank you!

明晓东 / Xiaodong Ming School of Engineering, Newcastle University, UK

xiaodong.ming@ncl.ac.uk

Liang, Q., Smith, L.S., 2015. A high-performance integrated hydrodynamic modelling system for urban flood simulations. *J. Hydroinformatics* 17, 518.

Smith, L.S., Liang, Q., 2013. Towards a generalised GPU/CPU shallow-flow modelling tool. *Comput. Fluids* 88, 334–343.

Xia, X., Liang, Q., Ming, X., Hou, J., 2017. An efficient and stable hydrodynamicmodel with novel source term discretization schemes for overland flow and flood simulations. *Water Resour. Res.* 53, 3730–3759.