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CW in China

The systemic studies started from 1980s, and the
first CW was built in 1990, Changping, Beijing.

In July 1990, a demonstration engineering of CW,
scaled 3100m3/d was constructed in Bainingkeng,
Shenzhen. It combined with subsurface flow CW and
stabilization pond.

In 1994, IWA CW conference was hold in Guangzhou.

In 2014, IWA CW conference Return back China in
Shanghai

At present, it extends to be utilized in municipal
wastewater treatment, industry wastewater
treatment, eutrophication water quality |
improvement, leachate treatment, storm water
treatment and non-point source pollution control.
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» Batch feeding VFs
» Batch Feeding VF + HF First stage filters

Three parallel cells,

Influent fed alternately
Raw wastewater . TN
Siphon
\, Sequential &2~
> loading
Bar screen &
(20 — 40 mm)

Second stage filters
Two parallel cells,
w8 | fedalternately
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N

Effluent
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Hybrid systems: different stages for
different reactions

Internal circulation(optional)
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Hybrid systems: different stages for
different reactions

1° stage SFS-h 2" stage SFS-v 3* stage SFS-h
Imhoff tank Line B i Line
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Denitrification/ Filtration

Sedimentation

different stages for
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Aerated systems
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erated systems
New CW: Sidestream oxygenation CW

» Aerated pure oxygen to achieve
nitrification

» Bench-scale pilot to full scale
construction (1.5 MLD)

» Reduced the area required for
nitrification by over 90%

D.0. 50-100 mg/L




New CW: French VF + areation

Patented Concept
Domestic wastewater,
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New CW: RVFCW
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New CW: Hybrid CW systems
| vertical baffling + lateral subsurface wetland |

~Internal reflux
r — —— — — — — — —E— — — — — —— — — — — - — — 1

Reuse_ or discharge
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Natural oxygenation tank
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Sewage __,. "
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——
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New CW: Hybrid CW systems

Micro-aeration, self-cleaning, high-load hybrid CW
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New CW: Hybrid CW systems
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Baishiyi WWTP, 500m?/
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New CW: Hybrid CW systems
_aerated vertical flow constructed wetland _|

> TN and NH4 removal — \Wastewater
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ok @ 30-940 mm

Zhang et al., 2018



Phosphorus removal in CW systems

» Removal mechanisms
» Substrate adsorption
» Plant uptake
» Precipication

» Substrate rich in A3+, Fe3*,
and Ca?* is good for P removal

)4 %%
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Phosphorus removal in CW systems

» Some large-scale SF wetlands can achieve sustainable
phosphorus removal

» Low-dose alum addition
for PO,-P removal
(no coagulation)

» Geochemical augmentation

increases PO,-P removal rates
in wetlands by a factor of 20

» Influent TP = 0.6 mg/L
Effluent TP < 0.1 mg/L

» David Austin

rce: American Academy of Environmental Engine Huie Constructed Wetlands, Clayton County, GA
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New Application Area
Industrial wastewater treatment

Landill leachate treatment (Leiria




New Application Area

Heglig, Sudan
process waters from an oilfield
(24 ha, 60 000 m3/d)
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New Application Area

» eutrophication water quality improvement by CW
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New Application Area

Urban stormwater runoff treatment
(Charleston, USA)
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New Application Area
» non-point source pollution control by CW

} CW with Ceratophyllum demersum for agricultural
unoff, Florida Everglades




New Application Area
» Agricultural waters treated by FWS CWs
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Concentrations of ammonium (N-NH,) and
orthophosphate (P-PO,) were generally low (<1
and <0.3 mg/l for N-NH, and P-PO,,
respectively),with  average vyearly mass
removals of 50 kg for N-NH, and 9 kg for P-PO,.

Ferro et al., 2018
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» New Application Area

water source quality protection

Nanpeng Reservoir water quality protection




» New Application Area

River water quality protection

Upgrade WWTP effluent to surface water sourc
(Class 1V)
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Nitrogen removal in CW systems

» Nitrogen removal is poor in CWs, constraining their
application

» TN removal varies from 10% - 60% (Machado et al.,
2017)

» The hybrid CWs are more efficient in N removal
(Vymazal 2013).

» Anaerobic ammonia oxidation may be important in N
removal

)4 %%
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Nitrogen removal in CW systems

Others T I 29.57%

norank - T : R NEEREE] 21.15%
Candidatus Brocadia = (0.11%
Candidatus Anammoxoglobus -] 0.25%

Sulturialea 4] 0.75%
Sphingomonadaaceae_unclassified 4] 0.76%
Phenylobacterium -D 0.76%
Xanthomonadales_unclassified 7] 0.78%
Hydrogenophaga 7] 0.80%
Desulfatichabdium 7] 0.82%
Alcaligenaceae_uncultured —m 0.82%
Thiocapsa <] 0.87%
Denitratisoma — 0.91%
Defluviimonas — 1.01%
Gemmatimonadaceae_uncultured - 11.23%
Thermomonas — 1.39
Comamonadaceae_unclassified —: 1.62%
Nitrosomonadaceae_uncultured 4 ]1.74%
Limnobacter | 11.81%
Christensenellaceae_uncultured 4] 1.95%
Anaerolineaceae_uncultured — ]12.80%
Xanthomonadales _uncultured — 27%
Rhodocyclaceae uncalssified 4 ]5.34%
Mitrospira ={ 7] 5.64%
D 12.85%

Thighacillys —|

Enrichment of anammox bacteria e A —
Candidatus Jettenia sp. and . 5 10 15 20 25 30 35
Candidatus Brocadia caroliniensis Frequency of Genus (%)

“fﬁk? Microbial community in a hybri
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The Cycle of C, N, S in CWs

» The pathways of C, N, S cycle in
CWs are very complex.

» Interactions among Micro-
organisims, animals, plants, medias
are still unclear

€0; 0; HiS ~)
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Greenhouse gas emission

» CO, emission FSW-CWs (96 mgC/m?2/h) < VSSF+HSSF-CWs (137mgC/m?/h)

» CH, emission VSSF-CW (3.0 mgC/m?2/h)< FWS CWs (4.0 mgC/m?/h) < HSSF CWs (6.4
mgC/m?2/h)

» N,O emission no difference FSW-CW (0.09 mgN/m?2/h), VSSF-CW (0.12 mgN/m?2/h),
HSSF-CW (0.13 mgN/m?2/h)

» Significant correlation TOC,,and CH, emission, TN, and N,O emission

» Hybrid CW can minimize GHG emission

» Future perspective

» ldentify sources of N,O (nitrification or denitrification)

» Analysis microbial community structure an functional gene responsible for GHG

» Long-term investigation and process optimization to reduce the emission

) A% %
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GHG (CH,) control

» Anaerobic Oxidation of Methane
process is found in CWs

» We found ANME-2d in CW

» CH, emission was mitigated by
dissimilatory metal reduction
and anaerobic CH, oxidation

Lab-scale CW for CH, emission control



Pharmaceutic removal in CWs

[ 1SF-CW [CIHSSF-CW
I vssF-CW I Hybrid CW system

» Constructed wetlands show 100
great potential for treatment
of pharmaceuticals

» Substrate, plants and
microbes in wetlands account
for the removal mechanisms.

Mean removal efficiency (%)
Z
1

» Constructed wetlands do not

|
|
Sulfamethazine (o —————
|
| |
|
1

completely reduce to low 10 ]
level the environmental risk 4 N T P T S gl ¥ g Bl
: : 2 g &£ & § 58 E & £ § T £ 8§ & B § B
] e ] = 9 = 5
due.to pharmaceuticals in i ‘% £ g N R : g 3 :
their effluent § 8 = 2 % &8 § £ E 3 & & = £
g C E E EE 5 Z
= © 3 £
Pharmaceuticals

Pharmaceutical removal in differe




Pharmaceutic removal in CWs

(2] Biodegradation
__ 1 Adsorption
Plant uptake

» Construction of vertical flow

constructed wetlands and ,;;,vf‘»;;f';;—ﬁ;lji_ﬁf'/ji;}’gf;{;;?,;_, i_ﬁi?;;;,;;,;,
incorporation of aerated concrete 9.08% /0

blocks, gravel, natural manganese
ore, natural iron ore in the CWs.

. .
,,,,,,

» Using carbamazepine and diclofenac
as indicator drugs

» Anaerobic and aerobic reactors are
connected in series to study the

removal effect and mechanism . . .
Diclofenac removal in Mn-mediated




Harvesting electricity from CW-MFC

» CWs create the required redox
gradient for MFC operation

» Electrogenic bacteria can degrade
organics at anode and transfer the
electrons to the cathode

» Maximum power density can reach
about 44 mW/m? with 95% COD

removal (Liu et al. 2014) Organics 9%

T—@)(—Wastewater

CW-MFC system (Doherty et al., 2015)

» System optimization is required

)4 A%
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Harvesting electricity from CW-MFC
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Batch Mode Continuous Continuous Continuous Simultaneous Horizontal flow
upflow upflow upflow upflow-
downflow
Graphite plate Graphite plate GAC and SSM GAC and SSM Granular graphite | Graphite plate
Glass wool Glass wool Glass wool
114.0 Wh/KgCOD
n/a 1.6 Wh/KgCOD | 8.5 Wh/KgCOD |247.3 Wh/KgCOD | 3.8 Wh/KgCOD | 35.9 Wh/KgCOD
36.5 Wh/KgCOD
- A R N AL AW J

Different setups of constructed wetland-microbial fuel cells (Doherty et al., 2015)
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Micro-/Nano-particles

» Metallic engineered nanomaterials (ENMs)
» Ag-NPs, Ti-NPs, ZnO-NPs

» In wastewater, range from < 1 ng/L to 110 pg/L

» Removal is low, mainly by aggregation and sedimentation, dissolution, == T =
sulfidation (Ag-NPs), adsorption, plant uptake Ag nanoparticles

» Effluent, harvested plant and waste sludge cause potential ENMs release

» Future perspective on system malfunctions (short-circuiting), possible
adverse effects CW released ENMs, etc.

» Micro-/Nano-plastic

» No research investigate removal of microplastics in wetland

» Affect the river and ocean ecosystems

» CWs potentially remove microplastics via biodegradation (bacteria or

earthworm), filteration, sedimentation, etc. Microplastic

» Further investigation is required

X
“f /} J( (Auvinen et al., 2017; Talvitie et al., 2C
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