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Wastewater treatment service is a long-term,
global-scale challenge

By 2050 - Nearly 70% of the world population is
urban and the pressure on and unwanted effects of
expanding wastewater systems will increase.

By 2015 - Over 80% of wastewater
resulting from global human

activities is discharged into rivers or
sea without any pollution removal.

MILLENIUM SUSTAINABLE ¢ o™
feviorien L e senamee GE3ALS

UNITED NATIONS



Developing wastewater resource recover facilities
(WRRF) 1s a solution in point

Current wastewater industry:

® Consumes over 57 Terawatt hour of electricity every
year, nearly 3% of the total U.S. electrical energy
generation (= 5.4 million household annual use)
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® Emits 0.75 Gigatonnes of CO,-eq, 1.5% of greenhouse
gas emissions (=260 million tonnes of coal burn)

Emerging WREF:

® The chemical energy embedded in wastewater is 4-10
times that needed for clean-up

® The nutrient elements (N & P), chemicals, and water
itself are value-added products when recovered
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Evolving to WRRF is still challenging...

e Different stakeholders refer to different sources of information and have different
points of views, it is difficult to identify best solutions to these challenges.

» Data collection (from different dimensions and scales)

* Wastewater service systems often function in isolation, relying on technocentric
approaches and failing to address non-engineering factors.

» Data integration (with multiple data-source layers)

 WRRF are complex integrated systems intended to deliver broader benefits yet
the existing paradigms have not been designed with multiple purposes in mind.

» Data visualization and interpretation (to drive decisions)



Data-driven discovery in WRRF

Can we

- Project the potential benefits of novel enterprises in
wastewater industry prior to any substantial change?
(policy traction)

- Design, explore and assess innovative new systems in
an integrated, more comprehensive manner?
(technological transformation)



3D-WRRF Case 1: How best to ensure

environmental sustainability

Pollutant Clean-up vs. Resource Recovery
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Probabilistic evaluation of integrating resource
recovery into wastewater treatment to improve
environmental sustainability
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3D-WRRF Case 1: How best to ensure

environmental sustainability

Developed
countries

Developing
countries
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3D-WRRF Case 2: Enable fast design and
full exploration of innovative new systems

Traditional: repeated trails

From idea to reality? How to formulate?
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3D-WRRF Case 2: Enable fast design and
full exploration of innovative new systems
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Wang et al, Science Advances, 2018, 4, eaaq0210.




Take home message

Data-driven approaches provide a promising foundation for
dealing with emerging challenges and supporting fundamental
changes in wastewater treatment and resource recovery facilities.

Data-driven wastewater infrastructure allows us to design and
use innovative new methods, to enhance the overall
performance of the existing water technologies, and to extend
functionality of today’s systems.

More research is needed to understand further the potentials
and challenges.
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