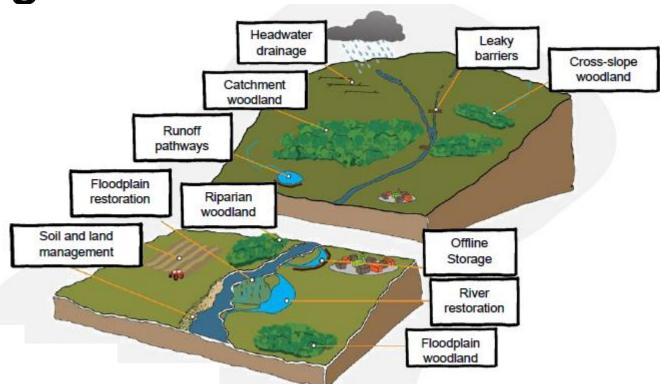


Research Centre Agroecology, Water and Resilience

Investigating the role of tree planting on sub-catchment level runoff in Warwickshire, England: Preliminarily findings

Craig Lashford, Soroush Abolfathi, Thomas Lavers, Nathaniel Revell, Sue Charlesworth, Matt Blackett & Frank Warwick

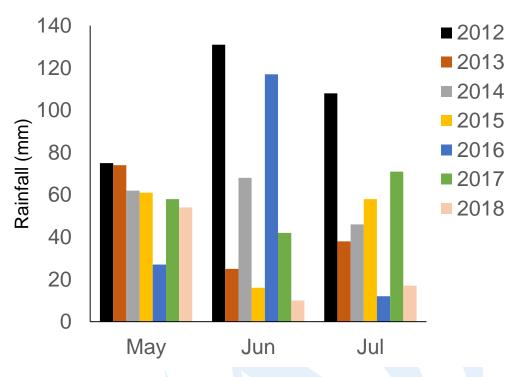
Centre for Agroecology, Water & Resilience, Coventry University, Priory Street, CV1 5FB



Presentation Structure

- Introduce the site
- Methodology
- Preliminary findings

Research Centre Agroecology, Water and Resilience



Summer 2018...

Month	May – July total rainfall (mm)	Days with more than 10mm rain
	railliaii (IIIII)	lliaii i oiliili iaili
2012	314	10
2013	137	4
2014	176	5
2015	135	0
2016	156	4
2017	171	5
2018	81	2

Presentation Structure

- Discuss Heart of England Forest Study Site
- Proposed methodology
- Findings from other work...
 - Validating MicroDrainage, UK standard drainage modelling tool

Study Site: Heart of England Forest

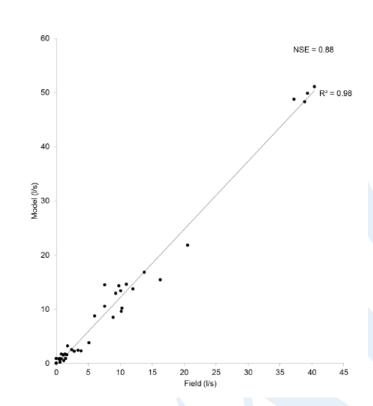
Research Centre Agroecology, Water and Resilience

Study Site: Heart of England Forest

- Located in the catchment of the Rivers Alne, Arrow and Avon
- 3,750 acres of planted woodland
 - Planted 1.7 million trees since 2002
- Aim to cover 30,000 acres
 - Create a connected native forest

Proposed methodology

- Monitor catchments pre and post afforestation
- Install depth sensors along the nearby stream
- Monitor multiple sub-catchments with trees at differing stages of maturity
- Monitor rainfall

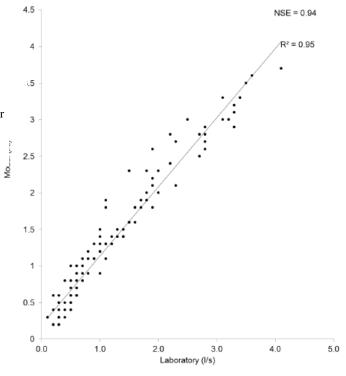

Results: Field Validation of MicroDrainage

Research Centre Agroecology, Water and Resilience

Monitored 5 rainfall events

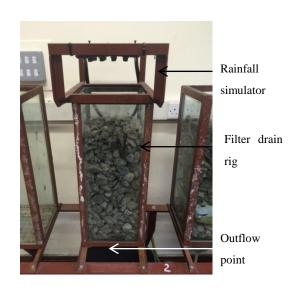


Hamilton, Leicestershire, UK

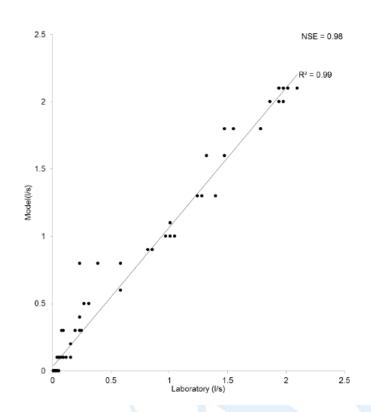

Results: Lab Validation of MicroDrainage

Research Centre Agroecology, Water and Resilience

 Analysed 5 differing rainfall intensities and durations



Porous Pavement


Results: Lab Validation of MicroDrainage

Research Centre Agroecology, Water and Resilience

 Analysed 5 differing rainfall intensities and durations

Filter Drains

Acknowledgements

- Heart of England Forest
- Coventry University
- Environment Agency
- Forestry Research
- Environmental Monitoring Solutions

Summary

• Give yourself time for field research!

- Planting trees is one aspect of the wider approach to NFRM
- MicroDrainage is an extremely effective tool for modelling flow through SuDS