Water-wise cities and smart water systems Workshop, Xi'an China, 11-13th September 2018

Sustainable and Resilient Water Infrastructure: The Safe & SuRe Project

www.safeandsure.info

Professor David Butler

Director, Centre for Water Systems University of Exeter, UK

Outline

- Why is Safe and SuRe infrastructure needed?
- What do we mean by Safe & SuRe?
- How can we build resilience & sustainability?
 - Safe & SuRe interventions framework
 - Example framework applications
- What is the relationship between reliability, resilience and sustainability?
- Conclusions

Safe & SuRe water infrastructure

Safe: *Reliable* SuRe: <u>Sustainable and Re</u>silient

Aim of the S&S research project:

To develop a new paradigm for 'Safe & SuRe' urban water management in the UK in response to emerging challenges and global uncertainties

Global threats

An era of unprecedented variability?

Reliability / Safety

Resilience

Sustainability

Reliable

Reliability – key properties Fail safe Monitored Capacity Active Hard Compliant **Efficient** Resistant Strong **Stable** Safe&SuRe

Water management

Performance deficit Level of service or design standard

The degree to which the system minimises level of service failure frequency over its design life when subject to standard loading

Rel = min (failure: probability)

Resilient

Basic concepts

System state

System performance response curve

Resilience definition and dimensions

Safe&SuRe

Water management

Resilience – key properties Safe to fail Interconnected Diverse Reserves Redundant Multi-purpose Integrated Recoverable Flexible Replaceable Safe&SuRe

Water management

Resilience definition & dimensions

Butler, D., Farmani, R., Fu, G., Ward, S., Diao, K., Astaraie-Imani, M., (2014). A new approach to urban water management: Safe and SuRe, Procedia Engineering, 89, C, 347-354. doi: 10.1016/j.proeng.2014.11.198

Sustainable

The unknown destination?

BUTLER, D., MEMON, F.A, MAKROPOULOS, C., SOUTHALL, A. & CLARKE, L. (2010). WaND. Guidance on Water Cycle Management for New Developments, CIRIA Report C690, ISBN 978-086017-690-9, 143 pp.

Sustainability – key properties Simple Affordable Natural Low energy Recycled Low impact Renewable Low resources Inclusive Equitable Safe&SuRe Water management

Sustainability definition & dimensions

Pulling it all together: Safe & SuRe

BUTLER, D., FARMANI, R., FU, G., WARD, S., DIAO, K. & ASTARAIE-IMANI, M (2014). A new approach to urban water management: Safe and SuRe, 16th Conference on Water Distribution System Analysis, WDSA, Procedia Engineering.

How?

Mitigation: 'Any physical or non-physical action taken to reduce the frequency, magnitude or duration of a threat'

Adaptation: 'Action taken to modify specific properties of the water system to enhance its capability to maintain levels of service under varying conditions'

Coping: 'Any preparation or action taken to reduce the frequency, magnitude or duration of an impact on a recipient'

Safe&SuRe

Water management

Applying the framework

- Threat-based, mitigat
- Relies on identificatio
- Conventional approa
- Addresses response c changes we can reasc (e.g. climate change)
- Widely used

- System failure modes more easily identifiable
- Many threats may result in the same system failure modes →
 Can be addressed in a single analysis
- Global resilience analysis

Compare systems or interventions:

E.g. Adaptation measures in an urban drainage system (*Mugume et al. 2015*)

Water management

Identification of key system failure modes:

E.g. Resilience of a wastewater treatment plant

Receiving water quality

- Consequence-based, coping focussed
- Relies on identification of potential social, economic or environmental consequences
- Focus on reducing vulnerability
- Detailed knowledge of threats or impacts not required

Safe&SuRe

Water management

- Focus on <u>learning</u>
- Evaluate success of mitigation, adaptation and coping actions to ensure strategies, processes and actions are updated
- Enables improvements to be made across all levels, leading to increased resilience and sustainability
- Process coordination and ownership of responsibilities present a challenge

Safe & SuRe relationships

Potential strategies: mitigation/ adaptation/coping/learning

- Low tech (e.g. sustainable drainage).
- **High tech** (e.g. 'smart', real time control).
- Integrated (e.g. SuDS, Sponge Cities).
- Scale (e.g. centralised, decentralised, hybrid).
- Flexibility (e.g. option portfolios, incremental build)
- Fit for purpose water (e.g. rain, grey, black, yellow).
- Policy change (e.g. planning controls, building regs).
- Behavioural change (e.g. floodproofing, insurance).

Safe&SuR

Water management

Range of intervention strategies

Combined sewer centralised storage

Urban creep control / green infrastructure

Sewer separation

Roof disconnection / water butts

Off-grid housing

Integrated urban wastewater system

Modelling and simulation

Safe & SuRe performance indicators

Objective	Reliability	Resilience	Sustainability
Flooding	% time flood free	Flood volume (m ³)	Number of properties affected
		Time flooded (hours)	Material damage (£)
Water Quality (DO and AMM)	% time >4 mg/l	6 h minimum (mg/l)	Impact to aquatic
	% time <4 mg/l	99%ile (mg/l)	resources (fisheries, fresh water)
CSO	Frequency of spills	Annual spill (m ³)	Aesthetic and health
	(annual events)	Time of spills (hours)	impact of spills
Energy	-	-	Operational tCO ₂
River flood downstream	% time flood free	Flood volume (m ³)	Properties affected
		Time flooded (hours)	Material damage (£)
Cost	-	-	Capital cost (£)
Acceptability	-	-	High-med-low

Safe & SuRe interventions?

CASAL-CAMPOS, A., FU, G., BUTLER, D., MOORE, A. (2015). An integrated environmental assessment of green and gray infrastructure strategies for robust decision making, *Environmental Science & Technology*, 49, 14, 8307-8314, DOI: 10.1021/es506144f.

Conclusions

Urban water systems need to be:

- Reliable to provide needed services, but not at any cost.
- Resilient to meet the unexpected and the extreme but with emphasis on *safe to fail*.
- Sustainable to ensure *long term* performance within planetary and social limits.

How?

- By developing, evaluating and implementing Safe & SuRe socio-technical systems.
- There is no *'one size fits all'* solution or strategy.

Conclusions

Why?

- To manage unprecedented change, uncertainty and variability.
- To prepare for the journey into the *unknown* which we call the future.

Water-wise cities and smart water systems Workshop, Xi'an China, 11-13th September 2018

Sustainable and Resilient Water Infrastructure: The Safe & SuRe Project

d.butler@Exeter.ac.uk

Professor David Butler

Director, Centre for Water Systems University of Exeter

