

The Related Research on Urban Runoff LID BMPs Control for Sponge city

Prof. Dr. Haifeng JIA, D.WRE School of Environment, Tsinghua University jhf@tsinghua.edu.cn

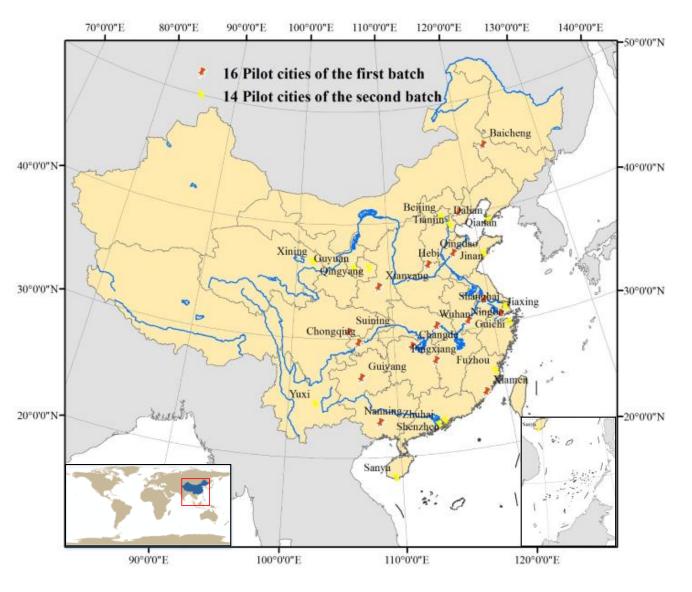
Contents

Background: Sponge city in China

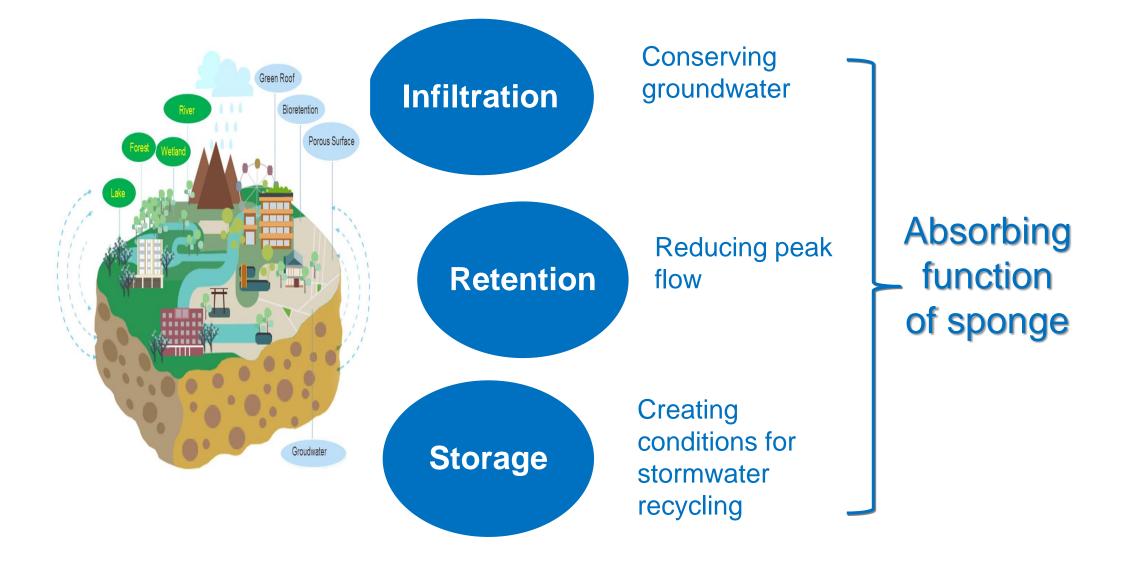
Selection of suitable LID BMPs

Field testing of LID BMPs

Layout Planning optimization of LID BMPs

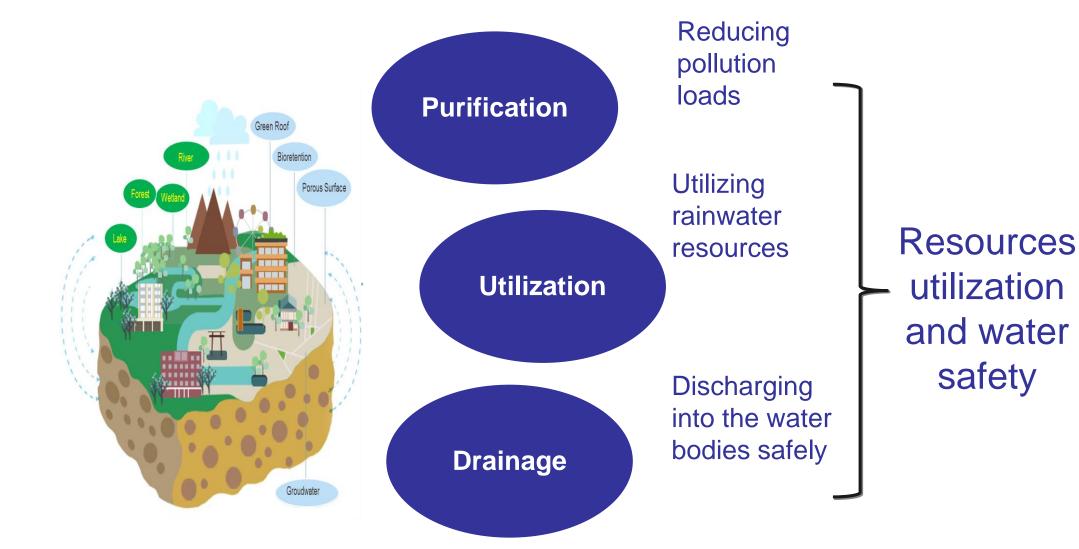

LCA evaluation

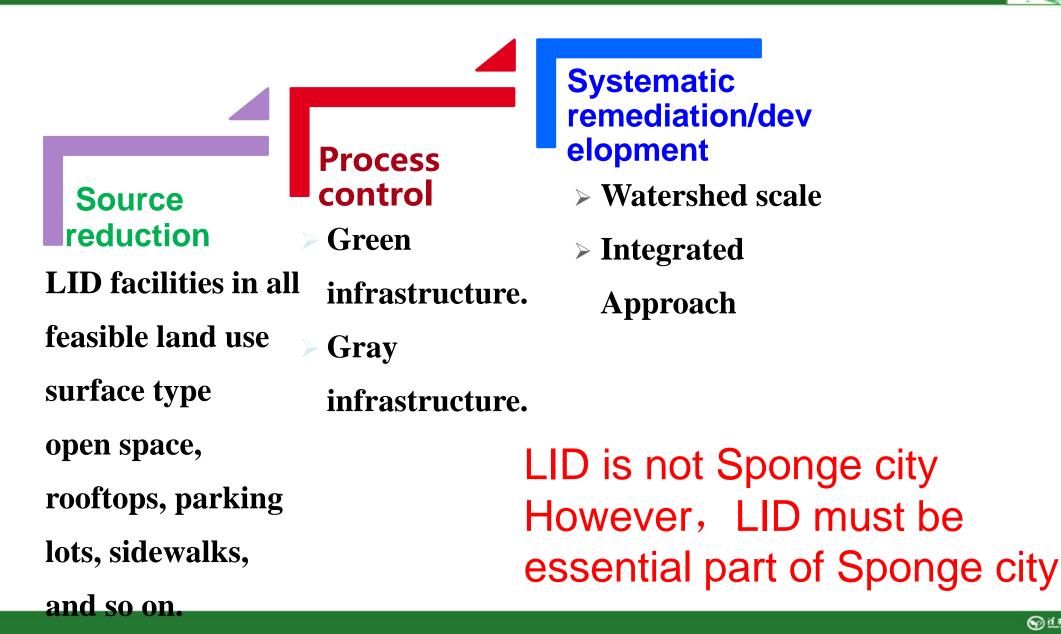
Sponge city in China



- It has been a national policy and movement in late 2013
- ♦ 30 National pilot cities
- 1000 billion RMB Yuan market

Principle and means of Sponge city




Principle and means of Sponge city

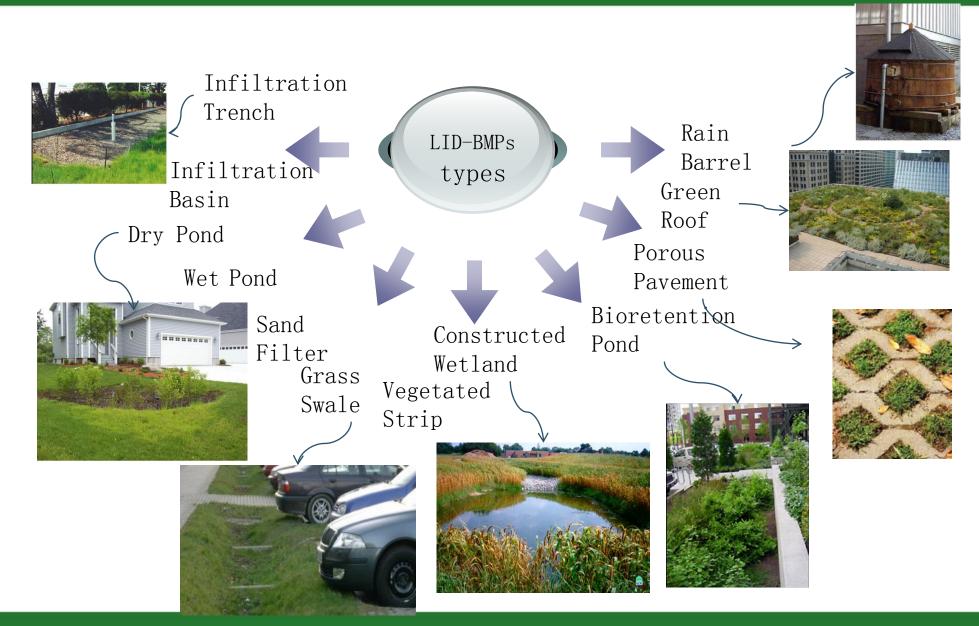
Technical Route

Contents

Background: Sponge city in China

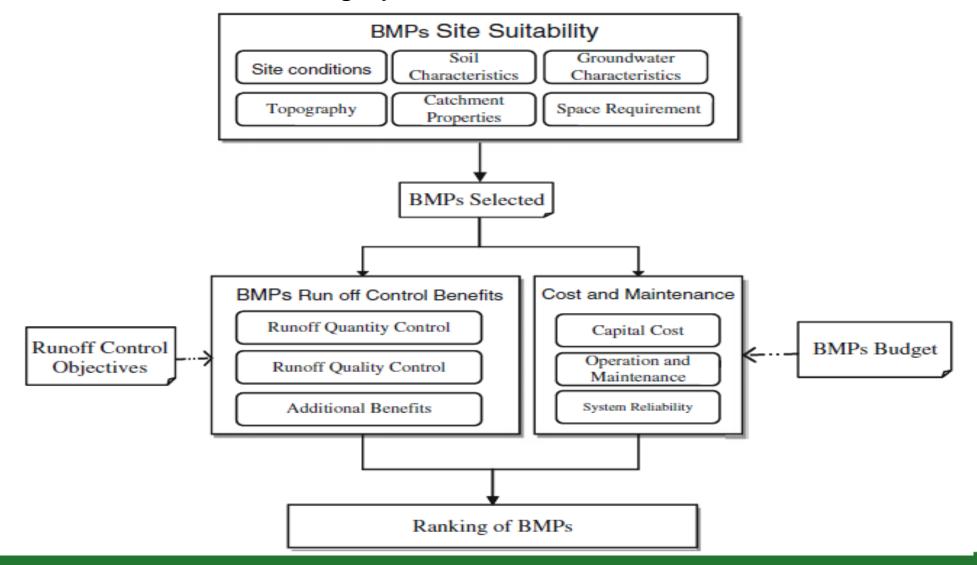
Selection of suitable LID BMPs

Field testing of LID BMPs


Layout Planning optimization of LID BMPs

LCA evaluation

Selection of suitable LID BMPs



Sitt tammen

Selection of suitable LID BMPs

• A multi-criteria index ranking system for urban runoff LID BMPs selection

Selection of suitable LID BMPs

Mit tammen

LID-BMPs selection Software

Haifeng JIA, Hairong Yao, Ying Tang, Shaw L. YU, Jenny X. Zhen, Yuwen Lu. <u>Development of A</u> <u>Multi-Criteria Index Ranking System for Urban Stormwater Best Management Practices (BMPs)</u> <u>Selection</u>. Environmental Monitoring and Assessment. 2013, 185(9):7915-7933

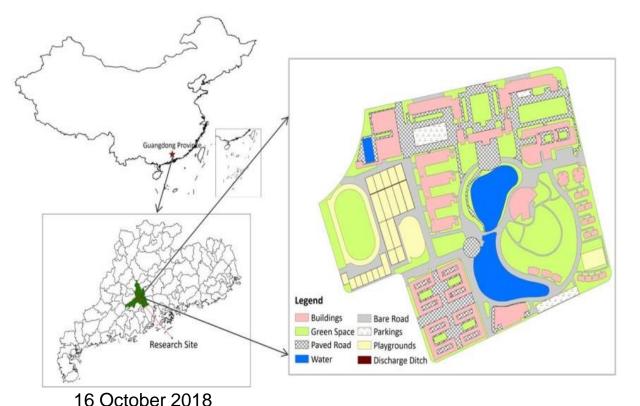
Contents

Background: Sponge city in China

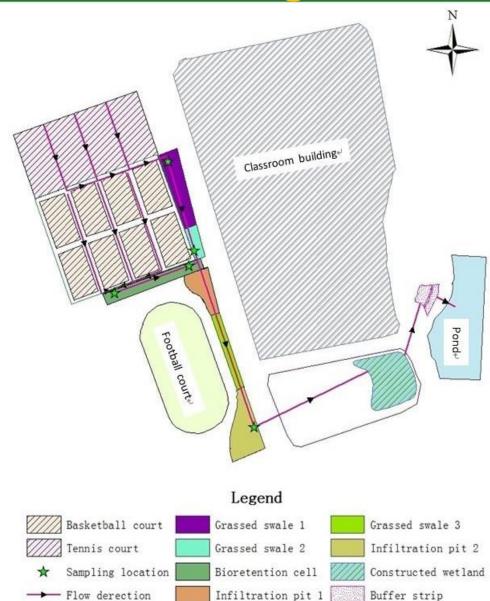
Selection of suitable LID BMPs

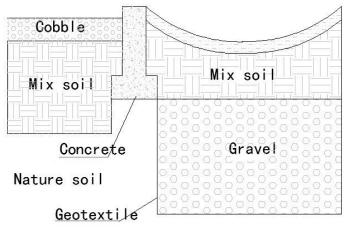
Field testing of LID BMPs

Layout Planning optimization of LID BMPs

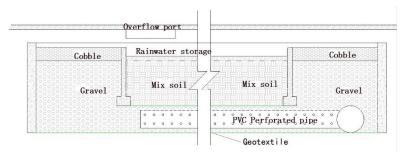

LCA evaluation

Field Test Site


The test site is on the campus of Guangdong vocational college of environmental protection in **Foshan**, Guangdong province in southern China.



BMP Design and Construction



Energy-dissipation chamber

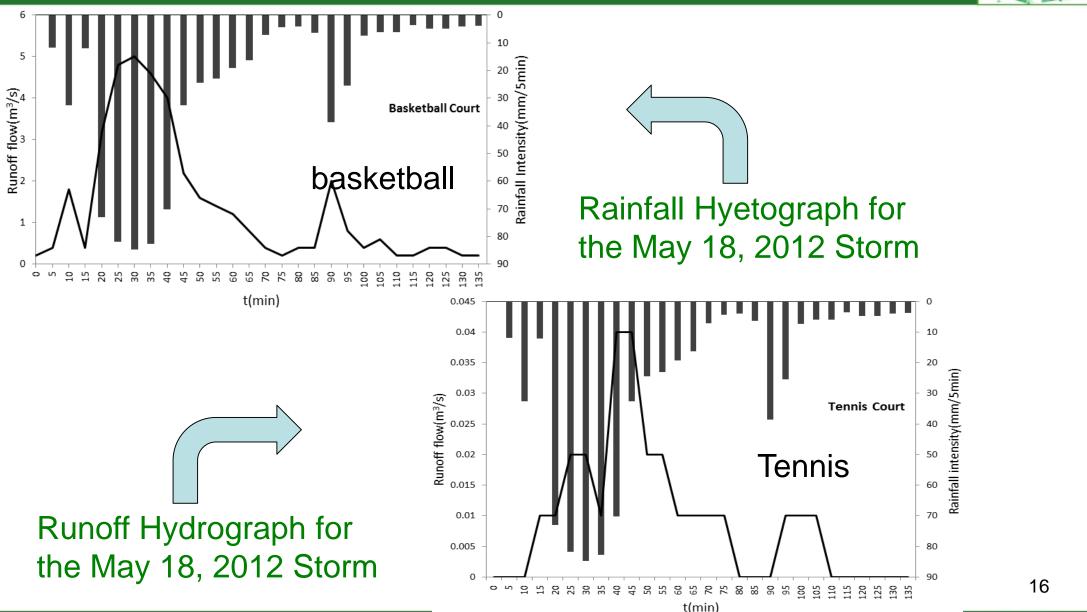

The profile of Grassed swale

The profile of Bioretention

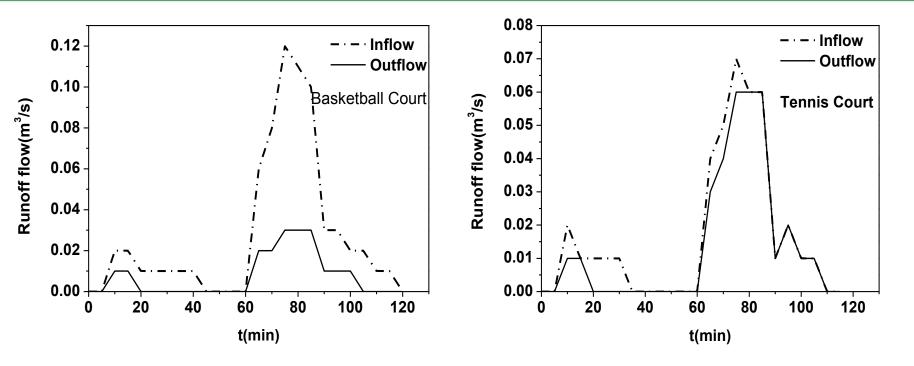
Design of the Sampling Program

Schematic of Sampling Locations

JIA Haifeng, et al. Field Monitoring of an LID-BMP Treatment Train System in China, Environmental Monitoring and Assessment. 2015, 187(6):4595.

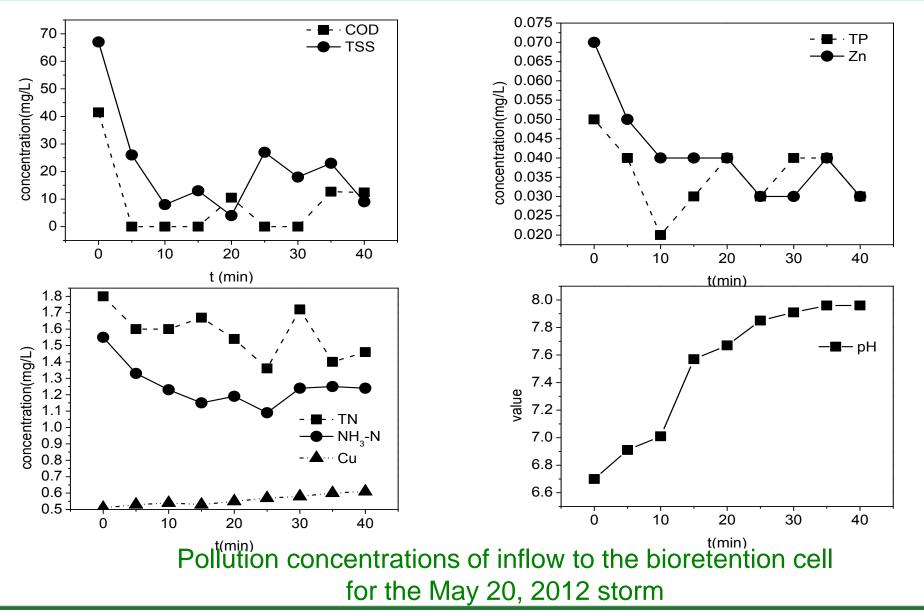

14

Design of the Sampling Program



- Water quality parameters analyzed included pH, COD, NH₃-N, TSS, TN, TP, Cu and Zn.
- A total of 19 storm events were monitored, of which 10 produced outflows from the BMPs from May,2012 - Sept. 2013
- Runoff Control Performance
 - Volume Reduction
 - Peak Reduction
- Pollutant Removal Performance
 - Bioretention Cell Removal Efficiency
 - System Removal Efficiency

Results and Discussion


Runoff Control Performance

Inflow and outflow hydrographs for the bioretention cell for the May 27, 2012 storm Inflow and outflow hydrographs for the grassed swale for the May 27, 2012 storm

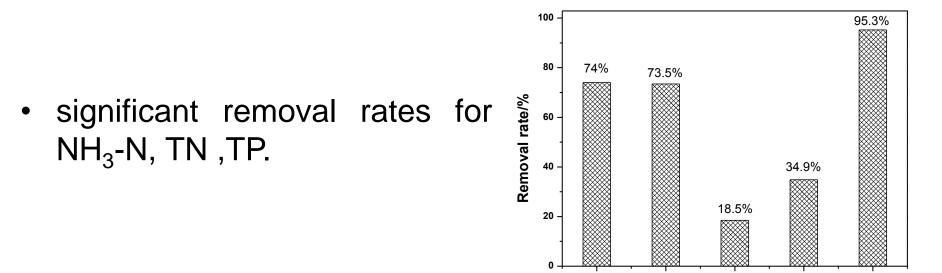
- bioretention cell is quite efficient in reducing the runoff peak and volume,
- while the swale is much less effective for a relatively large storm

Pollutant Removal Performance

Bioretention Cell Removal Efficiency

Overall removal efficiency for bioretention cell

Pollutant	TN	NH3-N	Zn	Cu	COD	TSS	TP
2012 Removal rate(%)	44.29	46.67	100.00	69.45	17.93	-29.62	-29.76
2013 Removal rate (%)	59.43	62.18	•	•		36.44	0.00
Total Removal rate (%)	48.61	51.10	100.00	69.45	17.93	-10.75	-21.26


- : less than detection limit; *: no sampling

- significant removal rates for NH₃-N, TN, Zn and Cu; fare removal rate for COD; negative removal rate for TSS, TP.
- the pollutants removal rates in 2013 were higher than that in 2012, especially the removal rate for TSS which changed from negative to positive.
- The results show that the performances of bioretention cell need one year operation to stabilize.

System Removal Efficiency

	Inflow Grassed swale 1 Bioretention cell		Outflow	Removal rate*(%)	
			Infiltration pit 2		
COD/ kg	3.02	0.80	3.11	18.52	
NH3-N/ kg	0.49	0.13	0.17	73.48	
TN/ kg	0.96	0.25	0.31	74.00	
TSS/ kg	8.44	3.11	7.53	34.85	
TP/g	0.07	0.71	0.04	95.26	

ΤN

NH ,-N

COD

TSS

TP

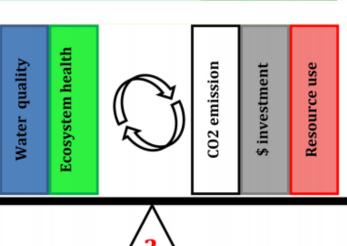
Contents

Background: Sponge city in China

Selection of suitable LID BMPs

Field testing of LID BMPs

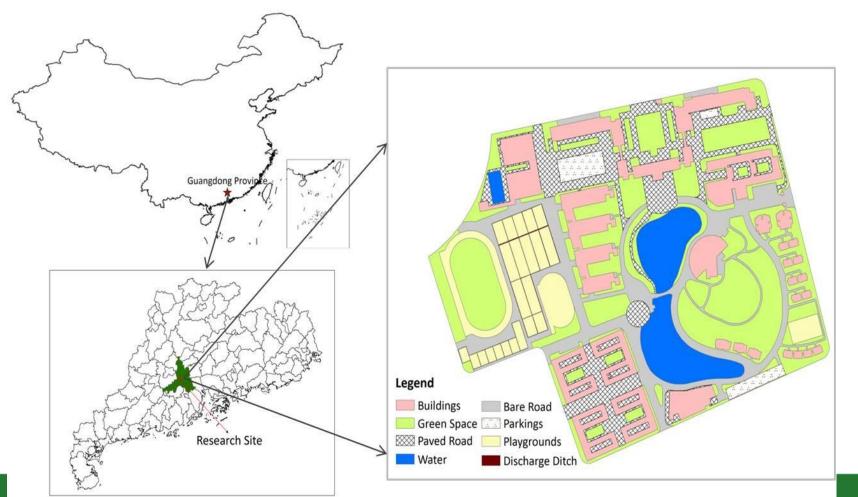
Layout Planning optimization of LID BMPs


LCA evaluation

Why should it be optimized?

The types and connection methods of LID facilities are diverse. The existing planning is usually subjective , which requires multi-objective optimization of layout considering economic and environmental benefits.

Methods	Limitations	References
scenario analysis	strong subjectivity, far from pareto optimum	Ahiablame L. M., Engel B. A., Chaubey I. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement[J]. Journal of Environment
non-dominated sorting genetic algorithm-II	long calculation time, complex mechanism, premature convergence	Jia H., Yao H., Tang Y., et al. LID-BMPs planning for urban runoff control and the case study in China[J]. Journal of Environmental Management, 2015, 149:65-76
Method-MCGS	Fast and reliable optimization	XU Te, ENGEL Bernard A., SHI Xinmei, LENG Linyuan, JIA Haifeng . Marginal-cost-based greedy strategy (MCGS): Fast and reliable optimization of low impact development (LID) layout. Science of the Total Environment. 2018 (640–641): 570–580.



A Case study in Foshan city based on NSGA-II)

\$ Guangdong College of Environment Protection: New
campus in Foshan city

23

() if i t t to make me

CANC NEURY

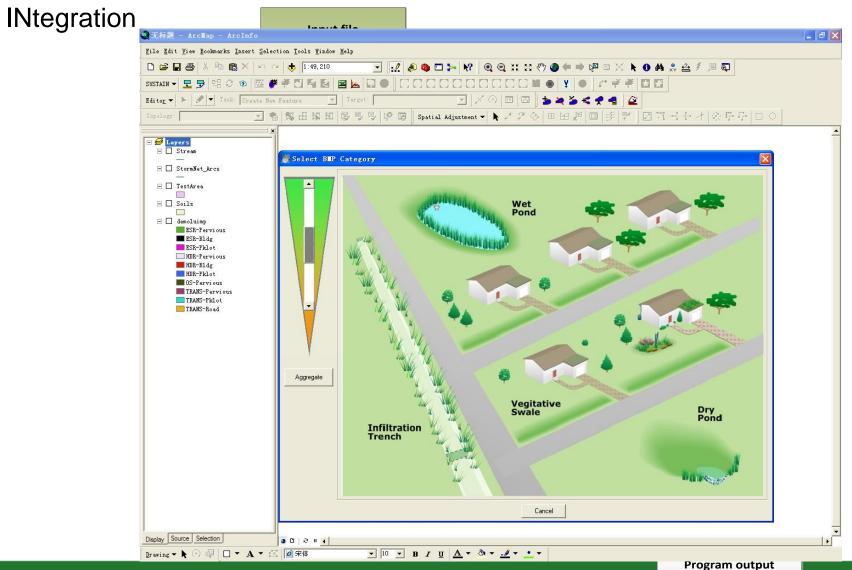
Introduction

Climate

- Subtropical monsoon climate, Plenty of sunshine
- Annual rainfall: 1622mm
- % Rainfall in Typical year
- Topography
- Land use
- ⑦ Drainage system
- Soil characteristics

	Layer	Soil type	Height of layer (m)		of
w-	artificial filled soil	人工填土 artificial filled soil	0.40-8.60		
N W () E	第四系全新统冲洪 积层 Quaternary holocene alluvial layer	淤泥质粉质粘土 Soft silty clay	0.50-5.50	0.00-8.40	
s	第四系全新统坡洪 积层 Quaternary holocene alluvial layer	粘土 Clay	0.60-9.50	0.00-7.20	
	第四系上更新统冲 洪积层	粉砂 Silty sand	0.50-6.70	5.00-11.50	
	Quaternary epipleistocene alluvial layer	粘土 Clay	0.90-7.70	0.40-12.50	
	第四系残积层 Quaternary eluvium	粉质粘土 Silty clay	0.80-25.10	0.00-12.40	
-	第三系地层	强风化泥质砂岩/砂质泥岩 Strong-weathered rock	0.80-33.30	0.00-28.50	
图 例 透水[不透2	下伏基岩 Tertiary	中等风化泥质砂岩/砂质泥 岩 medium-weathered rock	0.50-11.70	7.70-37.30	24
	underlying rock	微风化泥质砂岩/砂质泥岩	0.60-5.70	10.00-42.00	

Preliminary selection of suitable LID BMPs


	Landuse and Location P			Soil∙₽	Groundwater 🐖 Topography		Watershed- characteristics++		Space⊷
BMPs· ↔	<u>Landuse</u> ∙ type∙ ≁	Pollution· load· intensity#	Special-requirement· +?	type· ₽	Groundwater· level· to· bottom of·BMPs·facility· ↔	•	Service areas (<u>hm</u>) +	Ratio· of impervious· areas (%) +	occupied
Infiltration [.] Trench [.] +	R,C,S,T,G	medium	Building buffer distance >3m a Stream buffer distance >30m a	A-B ∉	>3-@	<15 @	<2- #	>0-#	medium 🤞
Infiltration- Basin- e	R,C,S,G 🔹	medium	Stream buffer distance >30m @	A-B- e	>3- @	<15 #	1-4 - 🕫	>0- #	Large 🕫
Dry- Detention Pond-≁	R,C,S,G *	medium	Higher topography e Stream buffer distance >30m e	A-D∙ ø	>1.22 @	<10 #	>4: @	>0· e	large ₽
Wet Detention Pond P	R,C,S,G 🔹	medium	Stream buffer distance ->30m +	A-D· e	>1.22 *	<10 .	>6-#	>0 #	large 🖉
0	R,C,S,M,T, G⊶	high 🧧	Around Impervious surface Road buffer distance <30m	A-D• e	>0.61 •	<5- •	- 0	>0 #	medium
Grassed Swale	R,C,S, T,G +	medium	Around Impervious surface Road buffer distance <30m @	A-D 🔹	>0.61 [.] e	0.5-5-@	<2:#	>0· e	medium 🦉
Constructed• Wetland• &	R,C,G· 🔹	medium	Stream buffer distance >30m <	B-D· 🧧	>1.22 🖸	4-15· ø	>10 #	>0 #	large @
Sand-Filter• 🕈	R,C,M,T· •	medium	Stream buffer distance >30m @	A-D· 🤞	>0.61 #	<10 *	<40 *	0-50+ 🕫	small- #
Green Roof 🔹	R,C,M• @	low e	Flat roof 🔹	<i>0</i>	- e	<4 @	- ø	- ø	- <i>4</i>
Rain-Barrel· #	R,C- #	low-e	Building buffer distance	- <i>4</i>	- <i>φ</i>	- 0	- 0	- <i>o</i>	small• •

25

9 11 1 × 1 == == ==

Simulation and optimization tool : SUSTAIN

SUSTAIN: System for Urban Stormwater Treatment and Analysis

Sit it the seme

Basic scenario: the previous development scheme

⑦ Drainage System simplification
③ Reclassification of Landcover :
 Roof; Road; Grass; water

& Basic scenario

Water Quantity simulation

Total runoff

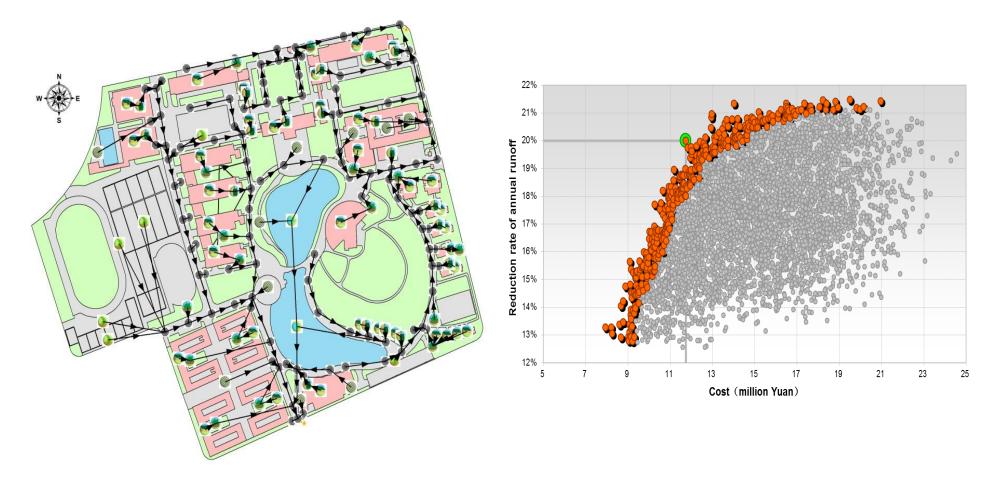
Peak flow

♦ Water Quality simulation

COD

♦ SS

♦ TN



LID scenarios

LID-BMPs design and optimization

JIA Haifeng, YAO Hairong, TANG Ying, YU Shaw L, Richard Field; Anthony N. Tafuri. *LID-BMPs planning for urban runoff control and the case study in China*. Journal of Environmental Management. 2015, 149:65-76.

A Fast and reliable optimization Method

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Marginal-cost-based greedy strategy (MCGS): Fast and reliable optimization of low impact development (LID) layout

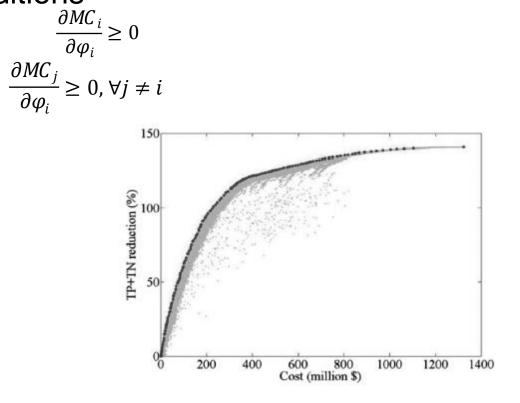
Te Xu^a, Bernard A. Engel^b, Xinmei Shi^a, Linyuan Leng^a, Haifeng Jia^{a,*}, Shaw L. Yu^c, Yaoze Liu^b

* School of Environment, Tsinghua University, Beijing, China

^b Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA

^c Department of Civil & Environmental Engineering, University of Virginia, Charlottes ville, VA, USA

Method-MCGS


Marginal-Cost based on Greedy Strategy, MCGS

In economics, marginal cost (MC) measures the opportunity cost that arises when producing one more unit of a good. Expanded to a USWM system, the marginal cost of placing an extra ratio of a certain LID practice can be defined as:

$$MC_{i,t} = -\frac{dC_i}{dU}|_{S_{t-1}} \approx -\frac{C_{i,t} - C_{t-1}}{U_{i,t} - U_{t-1}}|_{\varphi_{i,t} = S_{i,t-1} + \Delta}$$

- S_t :a vector that represents placing ratios of each LID practice at the –th stage
 - U :environmental indicators
 - c:economic indicators
 - decision variable

According to this definition, the economic law of increasing MCs can be expressed as the following two conditions

Programming flowchart of Marginal-Cost-Based Greedy Strategy. Digit One with the solid arrows represents the output loop. Digit Two with the dashed arrows represents the inner loop.

True

upper limits: li

 $\bigcup_{i=1, i \neq i^*}^N \{S_{i,t-1} < l_i\}$

$$\begin{split} \varphi_{i,t} &= S_{i,t-1} + \Delta \\ \varphi_{j\neq i,t} &= S_{i,t-1} \end{split}$$

calculate MC_{it}

 $i_t^* = \operatorname{argmin}\{MC_{i,t}\}$

 $S_{i,t} = S_{i,t-1} + \Delta$

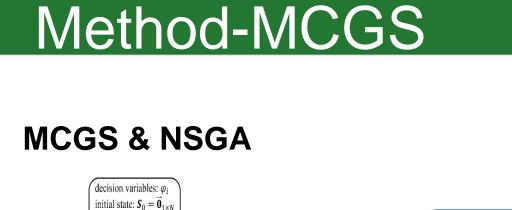
t = t + 1

 $i_0^* = 0$

t = 1

False

Pareto solution set


for *i* satisfying $S_{i,t-1} < l$

and $i \neq i^*$

 $S^* = S_{t-1}$

NSGA-II (right) and MCGS (right).

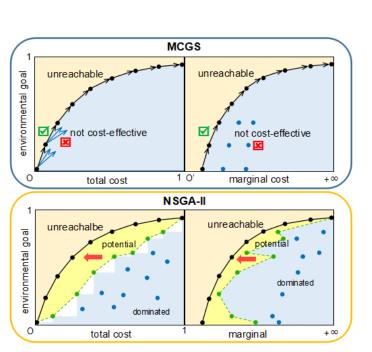
Programming flowchart of NSGA

False

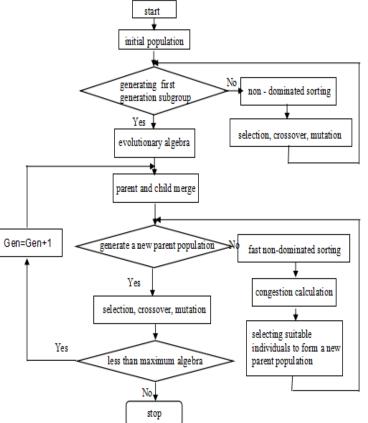
argmin{MC_{i,t}}=

 $S_{i^*,t-1}$

calculate MC_{i*t}

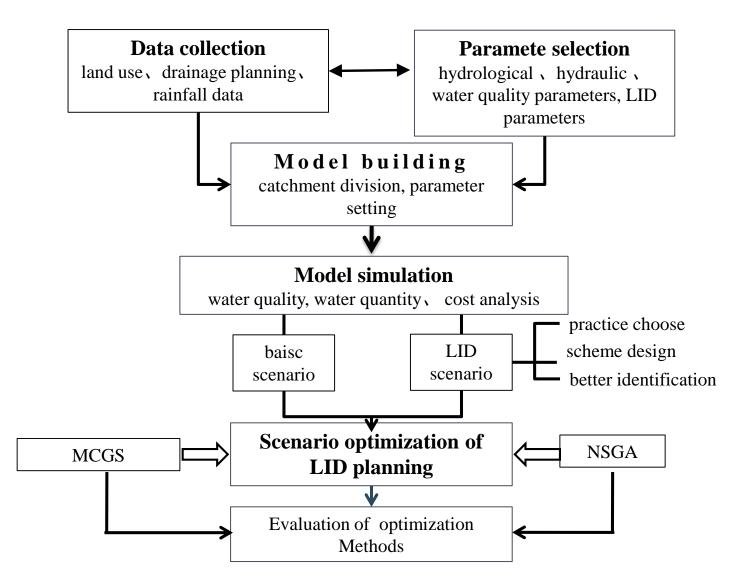

 $MC_{i\neq i^*,t} = MC_{i,t-1}$

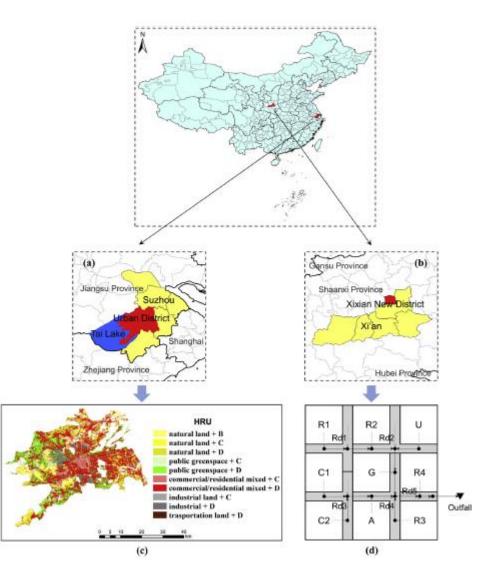
 $\int \varphi_{i^*,t} = S_{i^*,t-1} + \Delta$


 $\varphi_{i\neq i^*,t}=S_{i,t-1}$

Truc

False


Graphical explanations and comparisons of



Case study

Sitt to a series

Contents

Background: Sponge city in China

Selection of suitable LID BMPs

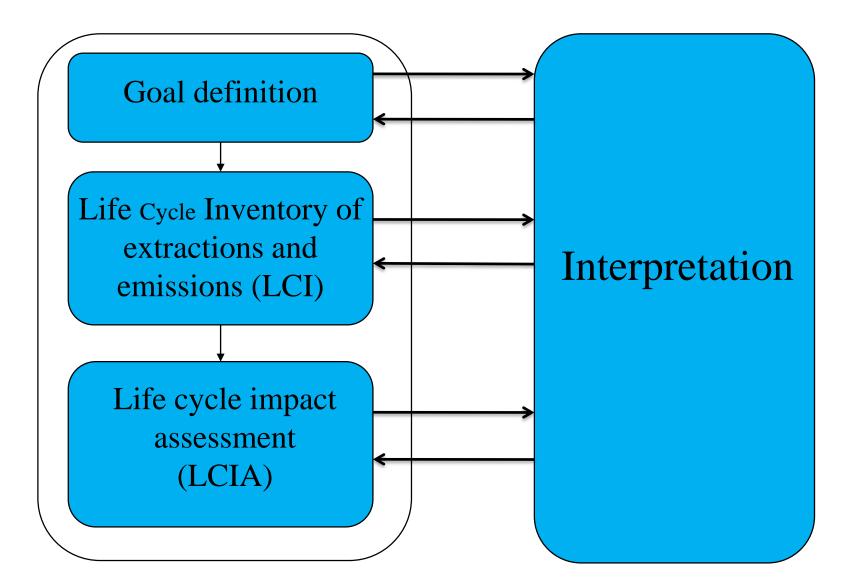
Field testing of LID BMPs

Layout Planning optimization of LID BMPs

LCA evaluation of LID BMPs

Bioretention Cell with Gravel Inlet Chamber	Grassed Swale					Constructe	
Source	Parameter						
	TSS (%)	NH ₃ -N	TN	ТР	Cu	Zn	
Removal efficiencies in 2013 in this study	36.44	62.18	59.43	0.00	69.45 ^a	100 ^a	
Li et al. (2008)	93		63	57	63	95	
Brown et al. (2011)	82	54	19	44			
Center for Watershed Protection (2007)	59		46	5	81		
Chapman et al. (2011)	87		63	67	80		
Geosyntec, Inc et al. (2011)	77	76	72	73			
Mangangka et al. (2015) (long dry period (>6 days))	80.78	82.21	40.93	75.33			
Mangangka et al. (2015) (short dry period (<6 days))	61.81	49.31	38.70	36.42			
Chen et al. (2013)			56				
Trowsdale and Simcock (2011)	45–70						

onstructed Wetland


Infiltration Pit

 Materials production, consumption and transportation
 Maintenance and disponse

 Maintenance and disposal can bring about environmental and economic burdens

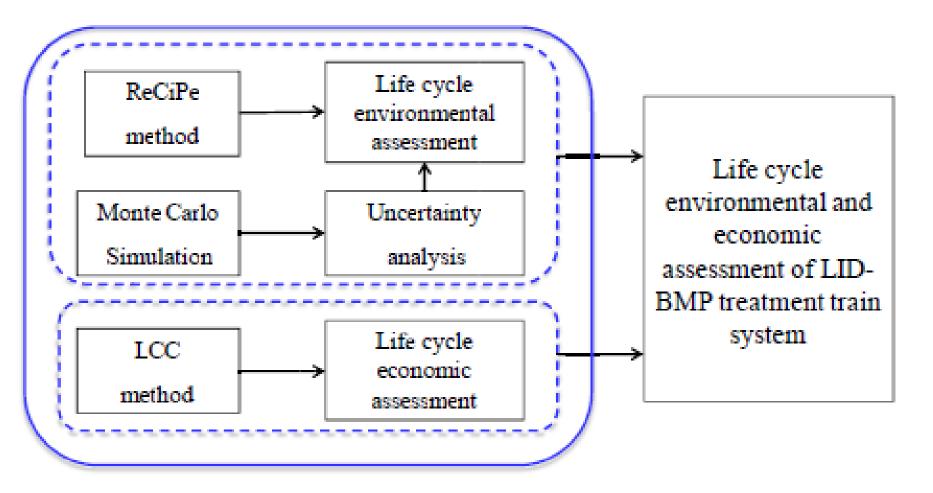


Fig. 1. Structure of the models.

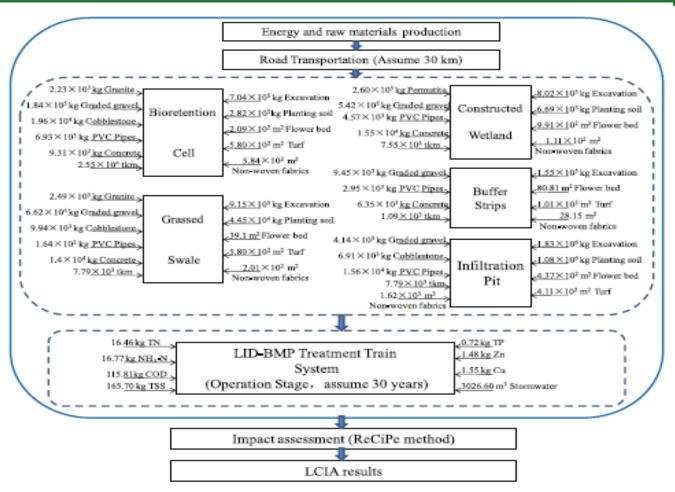


Fig. 2. System boundary and mass flow of LID-BMP practices.

XU Changqing, HONG Jinglan, JIA Haifeng*, etc. Life cycle environmental and economic assessment of a LID-BMP treatment train system: A case study in China. *Journal of Cleaner Production*, 2017,149 :227-237.

Recent published English papers in Sponge city and LID

- XU Te, ENGEL Bernard A., SHI Xinmei, LENG Linyuan, JIA Haifeng . Marginal-cost-based greedy strategy (MCGS): Fast and reliable optimization of low impact development (LID) layout. Science of the Total Environment. 2018 (640–641): 570–580.
- JIA Haifeng, YU Shaw L. DAVIS Allen P. Green Infrastructure and Sponge City Research. Journal of Sustainable Water in the Built Environment. 2018, 4(4): 02018001
- JIA Haifeng, YU Shaw L, QING Huapeng. Low impact development and sponge city construction for urban stormwater management. Frontiers of Environmental Science & Engineering, 2017, 11 (4), 20.
- XU Changqing, HONG Jinglan, JIA Haifeng*, etc. Life cycle environmental and economic assessment of a LID-BMP treatment train system: A case study in China. Journal of Cleaner Production, 2017,149 :227-237.
- XU Te, JIA Haifeng, WANG Zheng, etc. SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin. Frontiers of Environmental Science and Engineering, 2017, 11: 1.
- JIA Haifeng*, WANG Zhen, ZHEN Xiaoyue,etc. China's Sponge City Construction: A Discussion on Technical Approaches. Frontiers of Environmental Science and Engineering, 2017,11(4): 18
- Han Yu, Jia Haifeng*. Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China. Ecological Modelling, 2017, 353, :107-116. DOI: 10.1016/j.ecolmodel.2016.04.005

Recent published English papers in Sponge city and LID

- MAO Xuhui, et al. Assessing the ecological benefits of aggregate LID-BMPs through modelling. Ecological Modelling, DOI: 10.1016/j.ecolmodel.2016.10.018
- JIA Haifeng, et al. Field Monitoring of an LID-BMP Treatment Train System in China, Environmental Monitoring and Assessment. 2015, 187(6):4595. DOI:10.1007/s10661-015-4595-2
- JIA Haifeng, et al. LID-BMPs planning for urban runoff control and the case study in China. Journal of Environmental Management, 2015, 149 (1): 65-76.
- JIA Haifeng, et al. A closed urban scenic river system using stormwater treated with LID-BMP technology in a revitalized historical district in China. Ecological Engineering, 2014, 71:448-457.
- JIA Haifeng, et al. Development of A Multi-Criteria Index Ranking System for Urban Stormwater Best Management Practices (BMPs) Selection. Environmental Monitoring and Assessment, 2013, 185(9):7915-7933.
- JIA Haifeng et al. The advances of LID BMPs research and practices for urban runoff control in China.
 Frontiers of Environmental Science & Engineering, 2013, 7(5):709-720.
- JIA Haifeng, et al. Planning of LID-BMPs for urban runoff control: The case of Beijing Olympic Village.
 Separation and Purification Technology, 2012, 84:112-119.

Acknowledgement: It is funded by 国家自然基 金,国家水专项,北京市,佛 山市, and USEPA

谢谢③ Thank you