

Environmental modelling and regulation in catchments – Bristol 2019

Modelling of agricultural impacts and their mitigation for policy support

Yusheng Zhang and Adie Collins

Presentation outline

- Challenges of modelling agricultural impacts and their mitigation for policy support
- Approach to better quantification of agricultural impacts and their mitigation
- Updating agricultural impacts and mitigation efficacy using Farmscoper
- Current research: Soil to Nutrition strategic research programme

Characteristics of agricultural impacts

- Less about dramatic damage, more about cumulative effects of multi-pollutants
- Result from interaction of natural environment / conditions and farming activities
- Knowledge gaps about the impacts and mitigation efficacies of available measures
- Numerous stakeholders: economically / financially separate but hydrologically connected
- Agricultural externalities are a key component of sustainable intensification

PILLAR 1

Efficient and resilient agriculture systems

Increase yields; reduce food loss; limit emissions from agriculture; raise water-use efficiency; reduce release of nitrogen and phosphorus.

ROTHAMSTED RESEARCH

Modelling agricultural impacts: challenges

- Incorporation of progress in the understanding of pollutant delivery and associated model development
- Characterisation of baseline environmental conditions and farming activities with updated and/or high resolution spatial data
- Representation of existing regulatory efforts and impacts of agri-environment schemes
- Selection of more mechanistic-based measures
- Accounting for climate change impacts

CS area in 2016

Modelling agricultural impacts: approach

ROTHAMSTED

Using UKCP18 baseline data to characterise rainfall

- Improved spatial resolution: 5km x 5km to 1km x 1km
- Updated baseline from 1961-1990 to 1981-2010

Implications of using improved baseline data (1981 to 2010): AAR based rainfall band

Difference	Area	%
(new – old)	(km2)	
1	21733	14.5
0	127047	85.0
-1	610	0.4

Average cereal farm at national scale

Livestock	2016	2010	Crops	2016	2010
Beef Cows and Heifers	2.3	1.8	Permanent Pasture	15.8	16.7
Other Cattle (2 years +)	0.5	0.0	Rotational Grassland	4.6	4.5
Other Cattle (1 - 2 years)	2.2	2.0	Rough Grazing	0.6	1.1
Other Cattle (< 1 year) & Calves	2.7	2.2	Winter Wheat	46.8	54.2
Sheep	17.9	17.6	Winter Barley	9.5	8.0
Lambs (< 1 year)	19.7	18.2	Spring Barley	11.5	7.9
Other Pigs (20 - 50kg)	0.1	0.5	Winter OSR	16.7	20.7
Other Pigs (< 20kg)	0.2	0.6	Maize	2.5	1.2
Broilers	0.6	0.2	Beans	5.8	5.9
Turkeys	0.1	0.2	Other Crops	7.1	7.3
Breeding Birds	0.5	0.4	Bare Fallow	5.5	7.4
Other Poultry	0.1	0.6	Woodland	7.3	6.4

Average dairy farm at national scale

Livestock	2016	2010	Crops	2016	2010
Dairy Cows and Heifers	152.4	134.1	Permanent Pasture	65.6	61.1
Dairy Heifers in Calf (2 years +)	17.2	22.7	Rotational Grassland	28.8	23.4
Dairy Heifers in Calf (< 2 years)	15.4	14.3	Rough Grazing	2.1	2.5
Bulls (2 years +)	0.7	0.0	Winter Wheat	15.3	15.0
Beef Cows and Heifers	2.3	0.0	Winter Barley	3.5	3.7
Beef Heifers in Calf (2 years +)	0.5	0.0	Spring Barley	3.6	3.2
Beef Heifers in Calf (< 2 years)	0.3	0.0	Winter OSR	1.7	2.8
Other Cattle (2 years +)	8.3	6.8	Maize	11.9	11.6
Other Cattle (1 - 2 years)	37.7	23.3	Potatoes	0.1	0.1
Other Cattle (< 1 year) & Calves	75.5	67.0	Sugar Beet	0.4	0.3
Sheep	25.7	31.0	Peas	0.1	0.1
Lambs (< 1 year)	29.6	32.6	Beans	0.9	0.8

Revision of fertiliser application rates

	N rate (kg/ha)			P ₂ O ₅ rate (kg/ha)			2010 to
	Arable	Cereal	General croping	Arable	Cereal	General cropping	2010 10
	existing	revised	revised	existing	revised	revised	multı-
Permanent pasture	28	36	35	4	5	5	vear
Rotational grassland	82	86	80	13	11	15	
Winter wheat	194	192	189	28	30	25	average
Winter barley	144	150	142	32	35	27	(2013 to
Spring barley	111	113	106	27	32	29	2017)
Winter OSR	196	186	192	30	31	26	2017
Maize	82	80	64	24	43	24	
Potatoes	161	148	148	109	140	103	
Sugar beet	98	93	97	20	23	20	
Peas	0	2	1	14	18	12	100
Beans	0	1	2	19	16	17	JZII
Fodder crops	80	73	100	30	22	32	
Vegetables (Brassica)	136	117	131	61	54	72	ROTHAMSTED RESEARCH
Vegetables (Other)	75	23	103	43	23	61	UK Research
Orchards	68	65	73	8	16	14	and Innovation
Soft fruit	31	55	67	24	30	46	BBSRC

Potential efficacy with doubling existing uptake rates

	Average farm-based reductions at national scale (%)						
	Nitrate	Phosphorus	Sediment	Ammonia	Methane	Nitrous oxide	
Cereal	9.1	8.7	9.1	14.4	1.9	8.8	
General cropping	9.9	9.2	10.4	13.4	2.4	7.0	
Dairy	7.4	14.4	10.5	1.1	3.4	8.2	
LFA grazing	4.6	8.1	7.6	-0.7	1.3	5.0	
Lowland Grazing	5.6	11.3	9.3	-1.1	1.8	5.5	
Mixed	7.9	9.4	6.7	6.4	1.9	7.3	

Soil to Nutrition (S2N): Institute Strategic Programme

Mechanistic understanding

Micro-scale processes which drive nutrient use <u>Targeted</u> interventions

Management impacts on nutrient use

Food Systems Annual income from agricultural land (£/ha) Private and public 300 - 450 450 - 600 good 600 - 750 > 750 Delivering 'fitfor-purpose' rics to nark and improve nutrient use

> S2N ROTHAMSTED RESEARCH

UK Research and Innovation

https://www.rothamsted.ac.uk/projects/soil-nutrition-s2n

New and improved models / indicator datasets

- SPACSYS
- Landscape Model
- Catchment Systems Model
- ROTH-C
- Updated SEPARATE
- Updated risk matrix for diffuse water pollution at catchment scale – to take account of spatial and temporal mismatches between on-farm activities and downstream effects

Hierarchical research platform

North Wyke	15 sub-catchments
Farm platform	(2 – 12 ha)
Study	Upper Taw
catchment	(46 km²)
Surface water body	Taw (Source to Bullow Brook, 71km²)
Management	North Devon
catchment	(2364 km²)
River Basin	South West
District	(17622 km²)

The North Wyke Farm Platform

The North Wyke Farm Platform

Soil	Atmosphere	Farm Management		(10) (10) (10) (10) (10) (10) (10) (10) (10) (1	Water
% Moisture	Rainfall	Field inputs/outputs		mini to indexe s Militaria Mil	Temperature
Temperature	CO_2 and N_2O	Liveweight gain		A star in the second se	Conductivity
рН		Farm activities		The second	Turbidity
Bulk density		Labour hours		The second secon	pH
N, P & C status		Machine hours	15 flume laboratories		Dissolved O ₂
	Farmlet		75		Ammonium
	Permanent pasture Planned reserving				Nitrate
A A A A A A A A A A A A A A A A A A A	• Flume_outlet Rivers	AL UNIT AND			Dissolved
	15	16 Martin		T	organic C
				TTT.	ADL
2 AL	As Alth				
	10 11				, it
	- Aline		A MARKEN		
		Cos massarcon			Sequential/composite sampler
					UK Research
H. C.	A PARK			Total-P	and Innovatio
	LIAN DESS			Ortho-P	

Farm platform data – based mechanistic learning

Flow discharge and sediment loadings are a function of catchment area - no relationships between the distribution of compacted areas, e.g. poached and feeder locations or gateways, and sediment loadings

Pulley and Collins (2019), Journal of Environmental Management

Implications for best management

Farm visit visually-based current interventions

Move feeder rings are regular intervals

Construct troughs with a concrete base

Re-site gateways away from high risk areas

Farm track management

Establish riparian buffer strips

Business-as-usual

Revised management

Mechanistically-based best management interventions

Reduce the length of the grazing season

Reduce field stocking rates when soils are wet

Locate out-wintered stock away from watercourses

Loosen compacted soil layers in grass fields

Use correctly-inflated low ground pressure tyres

Impacts and trade-offs

Trade-offs	Visually-based Interventions	Mechanistically- based interventions
Capital cost (£)	114	70
Operational cost (£)	576	1533
Total cost (£)	690	1603
Nitrate (%)	1.2	2.1
Phosphorus (%)	1.0	2.6
Sediment (%)	2.1	5.0
Ammonia (%)	0.0	-21.6
Nitrous oxide (%)	1.9	12.4
Pesticides (%)	0.0	1.3
FIOs (%)	0.4	0.6
Energy use (%)	-0.3	-7.6
Soil quality (score)	1.0	12.5

Upper Taw catchment: in-situ monitoring / sampling

- River dischargePhosphorus (TP & SRP)
- NO_{3}^{-} and NH_{4}^{+}
- Turbidity/sediment
- pH and temperature

Upper Taw catchment: source apportionment work

UK Research

S2N

BBSRC

and Innovation

UKCP18 scenarios and projections

Scenario	Ensemble	Climate variable	Spatial resolution
RCP 2.6	1	Maximum air temperature	12 km²
RCP 4.5 (SRES B1)	4	Minimum air temperature	25 km²
RCP 6.0 (SRES B2)	5	Precipitation	River Basin District
RCP 8.5 (SRES A1F1)	6	Mean air temperature	Government Region
	7	Sunshine duration	Global
	8	Mean wind speed at 10 m	
	9	Mean sea level pressure	
	10	Mean relative humidity	
	11	Mean vapour pressure	
	12	Days of ground frost	
	13	Days of snow lying	
	15		

Accounting for climate change impacts on agricultural emissions to water and air

UK Research and Innovation

ROTHAMSTED RESEARCH

521

Environmental modelling and regulation in catchments – Bristol 2019

Thanks for your attention!

