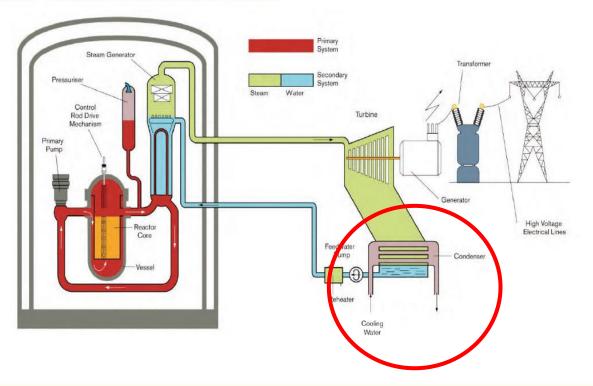


Marine WQ Modelling

Karen Edwards 28 August 2019

Marine Modelling Work Areas

- Nationally Significant Infrastructure Projects (NSIPs) permitting, planning, HRA support
 - Nuclear New Build; other power stations & installations
 - Tidal Lagoon Power
- Eutrophication work (planning)
- Bathing water modelling (PRF system)
- Marine Water Quality: water company and other permitting & planning
 - ad hoc assessment of major marine developments involving modelling, eg. harbour works and dredging
 - Suidance risk assessment (H1) and mixing zones



UNCLASSIFIED

2

Appendix A

Figure 2.1.1 Conceptual diagram of the proposed Hinkley Point C power station

Note there is no radioactivity associated with this water – not going into further as that isn't in my remit

Modelling Considerations

- The volume abstracted and discharged
- Mixing Zones fully 3 dimensional
- The temperature differential (targets)
- Other chemicals (CI2, Hydrazine) EQSs, PNECs
- Ecological aspects (protected areas: SAC, SSSI, etc)
- **♦** WFD
- Climate change

River Tay at Perth

Modelling Assessment

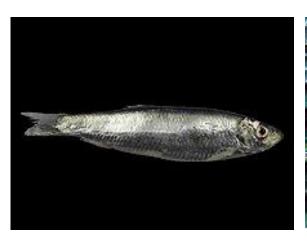
- Data used to set up model
- Calibration
- Validation
- Output & Scenarios used for Impact Assessment
- Independent Audit if needed
- Provide technical support to coastal processes, permitting, the HRA, the ES, etc.

Thermal Plume

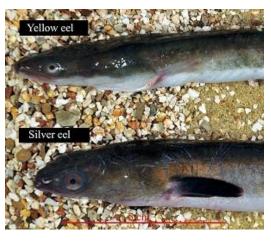
- Normal ~ 12.5°C increase over ambient
- ♦ Worst case ~ 25°C increase over ambient
- Compare with maximum ambient sea temperatures of about 20 to 21°C

Potential Impact from Cooling Water Abstraction

♦ How does the operator ensure that an abstraction of 130 m³/s in the aquatic environment doesn't have a major impact?


Guidance & supporting documents

- Temperature Targets and Hazardous Pollutants OI
- BEEMS Reports
- Habitats Directive WQ TAG Papers
- WFD "clearing the waters for all"
- Cooling Water Options
- Screening for Intakes & Outfalls: a best practice guide
- Screening at intakes & outfalls: measures to protect eel



Fish – Entrainment and Impingement

It's not just fish

UNCLASSIFIED

11

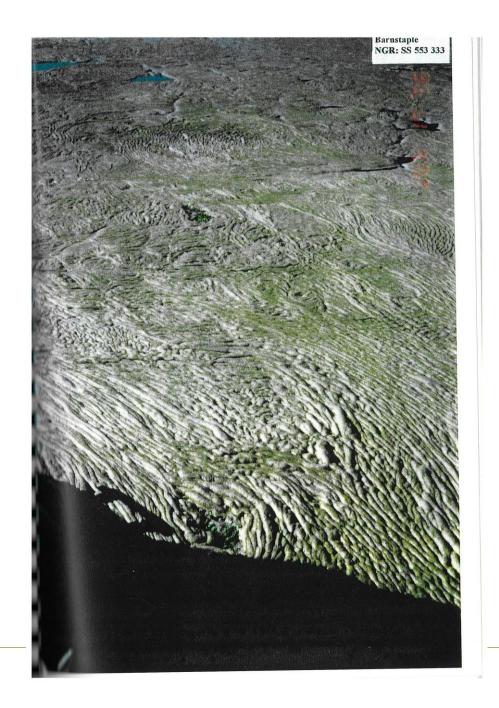
Key components from the Original HPC Cooling water application

- Intake velocity (limited to a maximum of 0.3 m/s)
- Behavioural deterrents i.e. Acoustic Fish Deterrent (AFD)
- Screening arrangements
- Fish recovery and return system (FRRS)
- and...

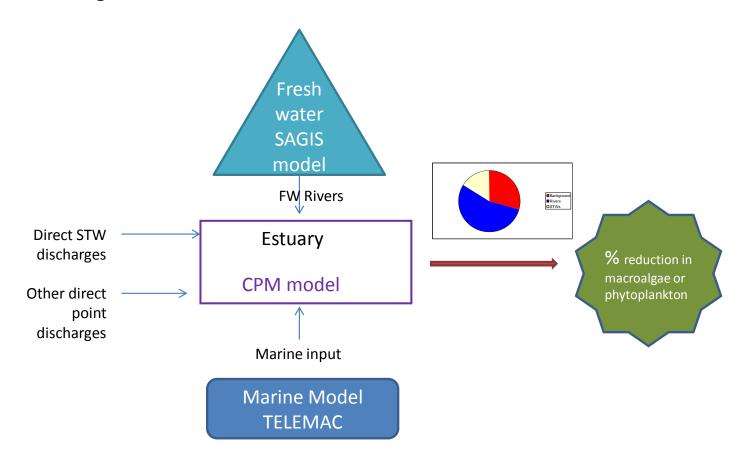
...while remembering that...

- the whole system has to work together
- including parts of the plant not regarded as FRRS
- nor even (previously) classed as plant with an 'environmental protection function'

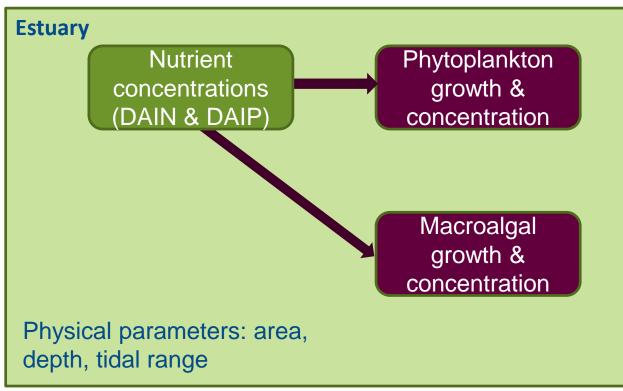
Eutrophication Modelling


Eutrophication Work

- Nitrates Directive & 2016 Designations
 - TraC Polluted Waters (Eutrophic) Proformas
 - Appeals to designated NVZs
- Contribute to Strategic Monitoring Review for TRaC waters
- Contribute to PR19/24 nitrates work
- WFD & River Basin Management Plans
- WPZ reviews


15

Modelling DIN in TraC waters



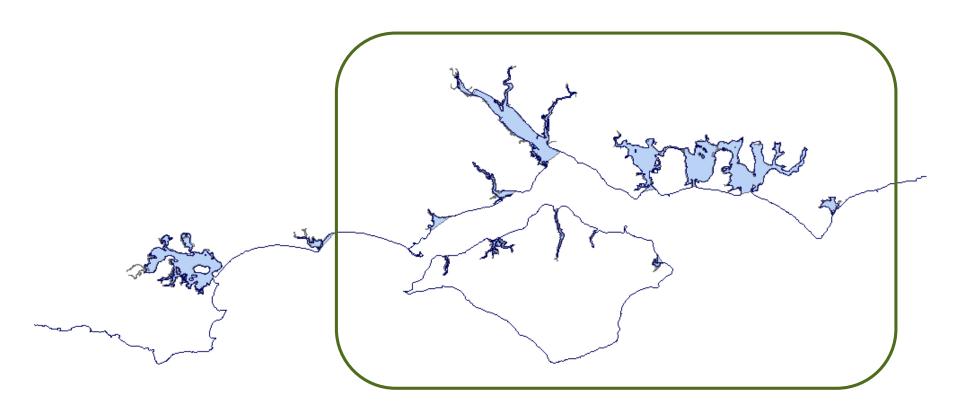
CPM Model:

Nutrient Loads (from rivers & industrial sources): DAIN, DAIP & flow

Coastal
Exchange:
DAIN, DAIP,
chlorophyll,
tidal
exchange

WFD CHL tests:

	Low Salinity (0-25ppt)	High Salinity (> 25ppt)
Average Chl-a concentration	<= 15	<= 10
Median Chl-a concentration	<= 12	<= 8
% Chl-a < 10 ug/l	> 70%	> 75%
% Chl-a < 20 ug/l	> 80%	> 85%
% Chl-a > 50 ug/l	< 5%	< 5%



WFD Macroalgae tests:

	Values at Good/Moderate Threshold
%cover in AIH	15
Biomass per m2 AIH	500
Biomass per m2 AA	500
%entrained in AA	5
AA (ha)	50
AA/AIH (%)	15

Map of Southern Estuaries

	2007	2008	2009	2010	2011	2012	Baseline
Portsmouth	400.23		538.00		308.09		417.40
Pagham	449.39		358.92		592.46		454.44
Langstone			463.31		268.56		333.44
Chichester			278.00		369.48		367.16
Chichester East			861.17		1052.35		866.56
Chichester Total			411.18		486.65		417.91
Medina		666.82				864.88	891.85
Newtown		710.99					721.80
East Yar						1166.92	1279.64
West Yar						1069.28	1144.12
Wootton Creek						632.08	640.30
Hamble		503.24		820.91			899.82

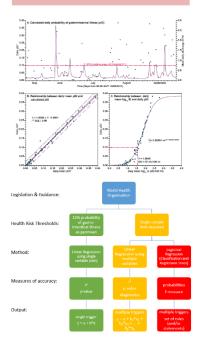
Scenario Results

Newtown N & P Offshore	P Freshwater/Direct Reduction (%) nore		Medina N & P Offshore	N & P Freshwater/Direct Reduction (%) Offshore			West Yar N & P Offshore	Freshwater/Direct Reduction (%)						
Reduction (%)	0	10	25	50	Reduction (%)	0	10	25	50	Reduction (%)	0	10	25	50
0	721.80	667.27	587.75	464.69	0	891.85	850.90	789.52	664.42	0	1144.12	1075.87	977.71	822.89
10	668.98	614.48	534.92	412.19	10	813.55	772.58	711.15	605.98	10	1049.38	981.26	883.38	725.39
25	589.11	534.36	454.69	332.94	25	695.74	654.57	592.94	489.72	25	908.28	838.37	737.54	578.92
50	453.24	398.36	319.07	201.19	50	496.79	455.22	393.03	289.67	50	645.52	589.97	497.04	339.35
Wootton Creek N & P Freshwater/Direct Reduction (%) Offshore		East Yar N & P	& P Freshwater/Direct Reduction (%) ffshore			Hamble	N & P Freshwater/Direct Reduction (%) Offshore							
Reduction (%)					Offshore		ater/Direct	Reductio	n (%)	Offshore	Fresnw	ater/Direct	Reduction	n (%)
	0	10	25	50	Offshore Reduction (%)	0	ater/Direct	Reductio 25	n (%) 50		Freshw 0	ater/Direct	Reduction 25	n (%) 50
0	0 640.30	10 600.84	25 541.89	50	Reduction			25	,	Offshore Reduction				,
0					Reduction (%)	0	10	25 968.61	50	Offshore Reduction (%)	0	10	25	50
	640.30	600.84	541.89 490.88	444.79	Reduction (%)	0	10 1150.46	25 968.61 910.09	50 692.15	Offshore Reduction (%)	0 899.82	10 789.29	25 624.39	50 368.89

Bathing Water Modelling

Bathing Water Modelling

- Pollution Risk Forecasting System Debbie Tyrrell
- Modelling to assess the cost & feasibility of improving bathing water classifications through agricultural measures – Grace Wong



EA Pollution Risk Forecasting System

MODELLING

Data management and processing; Model build and validation; Model export.

FEWS SYSTEM

Real-time automated daily forecast;
Data capture;
Data visualisation & export.

FORECAST DISSEMINATION

EA Data Explorer; Text messages; Email notifications.

River or Stream Intersection Emergency or Storm Overflow

BEACH MANAGEMENT

Beach signage; Electronic signs.

Permitting and Other work

- Suidance on: Risk assessment (H1) and required modelling
- WQ and Installations
- Pre-application work
- Permit determination

Questions & Answers