Oxide Resistive RAM (OxRRAM) for scaled NVM application

IMST 2009 Tutorial 9 Sept. 2009

Dirk J. Wouters
Principle Scientist Emerging Memory Technologies
Memory Group RDO/PT/CMOSDR
IMEC
Kapeldreef 75, B-3001 Leuven, BELGIUM
Introduction

- Focus on non-volatile resistive switching in binary oxides (TMO), for possible use in scaled NVM

- Focus on unipolar switching (because of cell size), though same materials also show bipolar switching → related mechanism?

- Focus on scaling potential and potential issues:
 - Most experimental data still on large devices
 - Application introduction only at 10nm technology node
 - Can we extrapolate and scale? What changes?

- Though about 10yrs of (renewed) RRAM research, many items remain that need further investigation by the research community!
Outline

• Introduction

• What is a resistive switching device (concept)
 – Focus on unipolar switching RRAM

• Short History of switching in oxide films for memory application
 – Revival of an old idea

• Mechanisms of resistive switching in oxides
 – Unipolar (vs. bipolar) switching in TMO’s

• Scaled OxRRAM for FLASH memory replacement?
 – Scaling prospects of RRAM

• Conclusions
What is a resistive switching device (concept)

- **A 2-terminal resistor element with electrically alterable resistivity**
 - typically a low and high conductive state, although (controllable) multi conductive states would be an asset (MLC)
 - Focus on programming with an electrical signal (e.g. not magnetic)
- **Focus on non-volatile resistivity change**
 - Different from Ovonic switching (electronic switching from low to high-conductive state, but requiring a hold current to remain in high-conductive state), and also of typical Mott transition element (as VOx)
- **Focus on elements that can switch repeatedly from low to high conductive state.**
 - Different from typical Fuse or anti-Fuse element (limited application to OTP)
- **I-V characteristics not critical**
 - Typical I-V switching characteristics do not obey memristor theory
What is a resistive switching device (concept)

- **Focus on UNIPOLAR switching**
 - Both unipolar and bipolar switching devices
 - **Unipolar:**
 - Set/Reset programming independent of voltage polarity write pulse
 - OK using only 1 type of voltage polarity
 - **Bipolar:**
 - Reset requires opposite polarity of write voltage then Set

 - **Main importance:**
 - Effect on memory cell selector device → cell size and array/periphery design
Cell and array configuration

- RRAM target application = NAND Flash replacement for <2X technology node. Requirements:
 → Small cell size (~4F^2/cell)

- Cross-bar array concept (TE lines \underline{BE} lines) results in 4F^2 cell

- However, raw cross-bar array not feasible because possible read errors (Sneak currents)
 → Need for selector element

A.Sawa, Materials Today, Vol11(6), 2008, p. 28
Selector element: general constraints

- **MOSFET transistor:**
 - Good current drive capability
 - Both uni- and bi-polar switching elements possible
 - Large cell (3-terminal device)

- **DIODE:**
 - Small footprint, \(4F^2\) cell size by vertical stack
 - Only for unipolar switching devices
Outline

• Introduction

• What is a resistive switching device (concept)
 – Focus on unipolar switching RRAM

• Short History of switching in oxide films for memory application
 – Revival of an old idea

• Mechanisms of resistive switching in oxides
 – Unipolar (vs. bipolar) switching in TMO’s

• Scaled OxRRAM for FLASH memory replacement?
 – Scaling prospects of RRAM

• Conclusions
The Reversible Voltage-Induced Initial Resistance in the Negative Resistance Sandwich Structure

P. H. Nielsen
N. M. Bashara
Dept. of Elec. Engrg.
University of Nebraska
Lincoln, Neb.

Recently the authors have found that a high initial resistance can be read out for long periods of time as long as the voltage is kept well below that for maximum current.

The above obviously suggests use of this device as a memory element which can read out nondestructively and which can be "erased" at will by increasing the voltage to a value beyond that for maximum current. The upper frequency limit of this effect has not been determined, neither has the usable read-out time.

New Thin-film Resistive Memory

By
J. G. Simmons,
B.Sc., Ph.D., F.Inst.P.†
AND
R. R. Verderber,
B.Sc., M.Sc.‡

Summary: A new thin-film metal-insulator-metal device is described. After the insulator has undergone a forming process, which consists of the electrolytic introduction of gold ions from one of the electrodes, its conductivity is observed to have increased quite markedly. In addition, the sample displays negative-resistance and memory phenomena. It is shown that under the appropriate switching conditions the device can be used as a non-volatile analogue memory with non-destructive read-out. The theory of operation of the device is also presented.
Main characteristics of RRAM already described:

"forming process"

"switching characteristics"

Figure 5. Current-voltage characteristics of unformed and formed device (after Simmons and Verderber 1967).

G. DEARNALEY,† A. M. STONEHAM,† AND D. V. MORGAN‡

J. G. SIMMONS,
B.Sc., Ph.D., F.Inst.P.†
AND
R. R. VERDERBER,
B.Sc., M.Sc.‡

The Radio and Electronic Engineer, August 1967
Resistive switching effect in *Transition Metal Oxides*

- First switching of NiO was already reported in 1964!

SWITCHING PROPERTIES OF THIN NiO FILMS*

J. F. GIBBONS and **W. E. BEADLE†**

Stanford Electronics Laboratories, Stanford, California

(Received 30 March 1964)

![Schematic diagram of NiO thin-film device](image)

Fig. 1. Schematic representation of basic NiO thin-film device.
Resitive switching memories based on these concepts eventually never developed:

• problems of stability
• scaling questioned
• emergence & rapid successful development of Si-based memories
Recent surge of interest

- 4 important events that put oxide RRAM again in the picture:

1. A.Beck, B.J.Bednorz et al, IBM Zurich, APL 2000
• Thin oxide films for memory are back!

New Thin-film Resistive Memory

By
J. G. SIMMONS,
B.Sc., Ph.D., F.Inst.P.†
AND
R. R. VERDERBER,
B.Sc., M.Sc.‡

Summary: A new thin-film metal-insulator-metal device is described. After the insulator has undergone a forming process, which consists of the electrolytic introduction of gold ions from one of the electrodes, its conductivity is observed to have increased quite markedly. In addition the sample displays negative-resistance and memory phenomena. It is shown that under the appropriate switching conditions the device can be used as a non-volatile analogue memory with non-destructive read-out. The theory of operation of the device is also presented.

Reproducible switching effect in thin oxide films for memory applications

A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer
IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon, Switzerland
(Received 13 March 2000; accepted for publication 15 May 2000)

Thin oxide films with perovskite or related structures and with transition metal doping show a reproducible switching in the leakage current with a memory effect. Positive or negative voltage pulses can switch the resistance of the oxide films between a low- and a high-impedance state in times shorter than 100 ns. The ratio between these two states is typically about 20 but can exceed six orders of magnitude. Once a low-impedance state has been achieved it persists without a power connection for months, demonstrating the feasibility of nonvolatile memory elements. Even multiple levels can be addressed to store two bits in such a simple capacitor-like structure. © 2000 American Institute of Physics. [S0003-6951(00)04327-8]
Recent surge of interest

- 4 important events that put oxide RRAM again in the picture:

1. A. Beck, B.J. Bednorz et al, IBM Zurich, APL 2000
2. W. Zhuang et al, Sharp/Univ Houston, IEDM 2002
2. W.Zhuang et al, Sharp/Univ Houston, IEDM 2002

- coined the term RRAM
- realization 1D1R array

Novell Colossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM)

W. W. Zhuang¹, W. Pan¹, B. D. Ulrich¹, J. J. Lee¹, L. Stecker¹, A. Burmaster¹, D. R. Evans¹, S. T. Hsu¹, M. Tajiri², A. Shimaoka², K. Inoue², T. Naka², N. Awaysa³, K. Sakiyama³, Y. Wang³, S. Q. Liu³, N. J. Wu³, and A. Ignatiev³

1: Sharp Laboratories of America, 5700 NW Pacific Rim Blvd, Camas, WA 98607, USA
2: Sharp Corporation, IC Group, 2613-1 Ichinomoto-cho, Tenri, Nara 632, Japan
3: Texas Center for Superconductivity and Advanced Material, University of Houston, Houston, Texas 77204-5002 USA

Fig. 1 Pulsed Laser Deposited (PLD) test memory resistor structure. The memory material is PCMO (Pr₃CaₓMnO₃). The double bottom electrode is formed with YBCO (YBa₂Cu₃O₇) on LAO (LaAlO₃).

Fig. 3 Resistordiode memory array cell structure. Both top and bottom electrode of the memory resistor is made of Pt. The cell size can be as small as 4F². This memory array required positive pulse for hot write and reset programming.

Fig. 5 TEM microphotograph of a 1R1D memory cell. Shallow P⁺ layer is formed onto n bit line. The memory array interconnect is copper doped Al.

Principle on bulk crystals published by A. Asamitsu et al., Nature, 1997

Recent surge of interest

- 4 important events that put oxide RRAM again in the picture:

1. A. Beck, B.J. Bednorz et al, IBM Zurich, APL 2000
2. W. Zhuang et al, Sharp/Univ Houston, IEDM 2002
3. I.G. Baek et al., Samsung, IEDM 2004
3. I.G.Baek et al., Samsung, IEDM 2004

- 1st advanced work (integrated device) with simple binary oxide (NiO)
- Coined the term OxRRAM (unipolar switching in TMO)

Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses

IEDM 2004
Recent surge of interest

- 4 important events that put oxide RRAM again in the picture:

1. A.Beck, B.J.Bednorz et al, IBM Zurich, APL 2000
2. W.Zhuang et al, Sharp/Univ Houston, IEDM 2002
3. I.G.Baek et al., Samsung, IEDM 2004

- Since then, resistive switching observed in many different oxides...

- Memristor concept applied to RRAM
- Triggered a lot of interest, especially in EE (design) world

The missing memristor found
Dmitri B. Strukov¹, Gregory S. Snider¹, Duncan R. Stewart¹ & R. Stanley Williams¹

\[M(q) = R_{\text{OFF}} \left(1 - \frac{\mu V \cdot R_{\text{ON}}}{D^2} q(t) \right) \]

Vol 453 | 1 May 2008 | doi:10.1038/nature06932

Figure 1 | The four fundamental two-terminal circuit elements: resistor, capacitor, inductor and memristor. Resistors and memristors are subsets of a more general class of dynamical devices, memristive systems. Note that \(R, C, L \), and \(M \) can be functions of the independent variable in their defining equations, yielding nonlinear elements. For example, a charge-controlled memristor is defined by a single-valued function \(M(q) \).
Outline

• Introduction
• What is a resistive switching device (concept)
 – Focus on unipolar switching RRAM
• Short History of switching in oxide films for memory application
 – Revival of an old idea
• Mechanisms of resistive switching in oxides
 – Unipolar (vs. bipolar) switching in TMO’s
• Scaled OxRRAM for FLASH memory replacement?
 – Scaling prospects of RRAM
• Conclusions
Classification of mechanisms

Resistive switching

Thermal effect
- Phase change
- Fuse-Antifuse effect

Ionic effect
- Cation migration – electrometallization
- Anion migration – redox effect

Electrostatic effect
- PCM
- OxRRAM
- CBRAM

Phase Change Memory Effect
- Electrochemical Memory

Magnetoresistive Memory Effects
- Ferroelectric Tunneling

Molecular Switching Effects

Ferroelectric Tunneling

Thermo- and electro-chemical switching phenomena in oxides

R. Waser IEDM 2008

VCM (?)

CT, Mott

(Not considered)
Thermochemical (Fuse-/Antifuse) OxRRAM

Unipolar switching

- Filamentary nature (metallic filaments?)
- Mechanism:
 - (soft) voltage breakdown to create/restore filaments
 - (local) thermal dissolution by high current to break filament
Anion migration : Type I

- Bipolar switching
- Filamentary nature (oxygen vacancies)
- Mechanism:
 (i) Oxygen vacancies form hopping conduction path (ZnO)
 - SET process is similar as dielectric soft breakdown which generates and moves oxygen vacancies to form CFs, like a percolation effect
 - RESET is due to the depletion of electrons in some VO+ along CFs @VRESET and the recovery of the electron-depleted VO+ with O2

 (ii) Oxygen vacancies locally acts as dopants making the MO conductive (TiO)
 - oxygen vacancies pile up near cathode \(\rightarrow\) reduce metal valency by trapping electrons
 - Form conductive region (virtual cathode) that moves up to anode

- TMO’s (NiO, HfO, TiO...), but also STO
Anion migration: Type II

- Bipolar switching
- INTERFACE effect

-Mechanism:

-Oxygen Vacancy diffusion results in oxygen depleted zone near cathode
-Effective V_{o+} doping effect:
-Change of barrier height modifies electron injection from electrode

-Mostly complex oxides (PCMO, doped STO),
but also TiO (“Memristor”)

A. Sawa, Materials Today, Vol.11(6), 2008, p. 28
RRAM Mechanisms: overview

- **Thermal**
 - Fuse-antifuse processes [thermochemical]
 - Conductive filaments cf. dielectric breakdown

- **Ionic**
 - Ionic transport + redox reactions
 - Anion migration (oxygen vacancies)
 - TYPE I
 - Conduction through filament of localized oxygen vacancies
 - TYPE II
 - Oxygen vacancies affect SB height in metal/semiconductor-like interface
 (Uniform view)

Because of unipolar mechanism,
Focus on Fuse/antifuse type
Unipolar switching in OxRRAM

- Many indications of filamentary switching found:
 - (non) scaling of Ron with cell area
 - Intermediate and anomalous switching states
 - C-AFM

Baek et al, IEDM 2004

Area scaling of LRS/HRS resistance in OxRRAM

Initial state
$R_{\text{init}} \sim 1/\text{Area}$

SET state
$R_{\text{LRS}} \sim 1/\#\text{filaments}$

RESET state
$R_{\text{HRS}}^2 = R_{\text{init}}$
$R_{\text{HRS}}^1 \sim 1/\#\text{filaments}$
$R_{\text{HRS}}^2 = R_{\text{HRS}}^1 \parallel R_{\text{init}}$

1/\#filament
OR
1/Area
Unipolar switching in OxRRAM

- indications of metallic nature of filaments:
 - Positive temperature coefficient of resistance
 - XTEM/EELS: observation of pure Ni peak w/o O

FIG. 4. ln(I) vs $1/k_BT$ curves of I_{on} and I_{off}, whose temperature dependencies were obtained separately without switching at each temperature, $V = \pm 0.2$ V. The inset shows the temperature dependence of the normalized resistivity, $\rho(T)/\rho(300 \text{ K})$, for I_{on} and a bulk Ni film.

Jung et al, APL 90, 052104 (2007)

FIG. 2. (Color online) Cross-sectional HAADF-STEM (a) and HR-TEM (b) images of the switching failed NiO$_2$ film showing the NiO$_2$ grains generally broken from the columnar shapes. (c) Typical HR-TEM image obtained at the NiO$_2$ film near the top Pt electrode, which clearly illustrates irregularly broken NiO$_2$ grains as indicated by the dotted line. (d) Electron energy-loss spectra taken from the area G1 (grain) and area G2 (grain boundary) of (a) with the probe size of ~1 nm.

Park et al, APL 91, 222103 (2007)
(No) link between material and switching mechanism?

- Both unipolar and bipolar switching has been observed on same TMO material: depending on program procedure!?
 - Pt/TiOx/Pt (D.S. Jeong et al.; ECS 2007)
 - Ni/NiO/Ni : L.Goux et al (IMW 2009)
 - TiN/HfO/Pt (IMEC, unpublished results)
Co-existence unipolar/bipolar OxRRAM in NiO

Oxidation at 500C for different durations in oxygen:

Bipolar switching

- \(R_{\text{init}} < 100\Omega \)

Unipolar switching

- \(R_{\text{init}} \sim 1k\Omega \)

Short oxidation:
- Low initial resistance \(R_{\text{init}} \)
- No forming process
- Coexistence of both switching modes

Longer oxidation:
- Higher \(R_{\text{init}} \), due to thicker NiO, change of microstructure...

(J.G. Lisoni et al.; MRS 2009)

- Forming needed
- Difficult bipolar mode

L.Goux et al, IMW 2009
Similarity/Link between 2 mechanisms

Fuse/antifuse: typically *metallic* filament
Anionic type: *oxygen vacancy* filament

Speculation

More qualitative than quantitative difference?

→ If local \([V_{O}^+]\) increases: closer to metal!

Observation

→ Nature of filament changes for high or low power UNIPOLAR programming

Figure 5

- **a)** R_{set} dependence of the extracted activation energy ΔE as defined in Fig. 4.
- **b)** Sketches of the associated amounts of oxygen vacancies created during set switching and affecting the conduction mechanism.

Oxygen vacancies play crucial role in both mechanisms!

L.Goux et al, IEEE TED 2009
Outline

• Introduction
• What is a resistive switching device (concept)
 – Focus on unipolar switching RRAM
• Short History of switching in oxide films for memory application
 – Revival of old idea
• Mechanisms of resistive switching in oxides
 – Unipolar (vs. bipolar) switching in TMO’s
• Scaled OxRRAM for FLASH memory replacement?
 – Scaling prospects of RRAM
• Conclusions
Non-volatile solid-state memory

USB flash drives

MP3 Players

Mobile phones

Solid state hard disks
Laptops without magnetic HD

More and more memory is required
Current main NVM technology = (NAND) Flash

- Basic device = Si floating gate transistor, 1T cell
 - WRITE: threshold voltage is shifted by putting (PROGRAM) or removing (ERASE) charge from the floating gate (by hot carrier injection or tunneling)
 - READ-OUT by selecting element and current sensing

- NAND Flash array: true cross point array of WL (poly) over BL (diffusion) = 4F²/cell!
Current main NVM technology = (NAND) Flash

- Flash also uses MultiLevel
 - Programming to 3 different Vt levels allows to store 2bits/cell (2n levels = n bits): margins divided by 3!

 ![Diagram](image)

 - This multilevel capability of floating gate memory allowed for a unique step in bit size scaling: \(2F^2/\text{bit}\)

- Current status:
 - NAND (Samsung, Toshiba/Sandisk, Hynix, Micron/Intel), now @ 64Gb, 4X-3X technology node
Flash scaling limitations (1)

- **Scaling limitations**
 - Reduced FG coupling of scaled device
 - Limit of tunnel ox scaling
 - Nu further voltage scaling
 - Electrostatic interaction between neighbouring devices
 - Dense patterning requirements ahead of advanced litho
 - Dual patterning developments

Limits of Flash scaling beyond 30nm node?
Flash scaling solutions: (1) Evolutionary

1. Charge Trap Flash
 - Use of charge trap layer instead of FG

2. 3D flash
 - Vertical poly-Si SONOS

True vertical NAND string integration (Toshiba, VLSI 2007)
FLASH scaling limitations (2)

- Fundamental limitations?
 - At 20nm, less than 100 electrons are present on the FG for $V_t=1$
 - If 20% charge loss is the spec, we talk about ~10 electrons...
 - for 10 yrs retention, $I_{\text{leak}} \ll 1e/\text{yr}$...

Ref: K. Prall, NVSMW 2007
• Resistive RAM?

• Requirements:
 – Small cell size
 • $4F^2$: only for 1D-1R cell configuration
 • Requires unipolar switching
 – Scalability
 • Not limited by minimum charge
 • Limitations of RRAM operation principle?
 • Scaling of program current?
 – MLC and/or easy 3-D stacking
 • Relatively easy to write in different R-states
 • But control/distributions & retention questionable
 • 3D stacking critical on selector device
 • Non-1Xtal Si:
 » Poly-Si diode
 » Oxide diode
Program Current Scaling

- "simple picture":
 - \(I_{\text{Reset}} \) scales 1:1 with compliance current during Set
 - **Rational:**
 - Max. current during Set operation determines the "strength/number" of filaments
 - Filament configuration in turn determines the current level for RESET
 - **NOT dependent on cell area**

\[
I_{\text{reset}} = I_{\text{comp}}
\]

Adapted from K.Kinoshita et al APL 93, 033506, 2008

NiO
L. Goux et al, IEEE TED 2009
Experimental current scaling

- As a result, typically observed:
 - No area scaling of ON resistance
 - Program current density increases!

But, following the current scaling rule, we should be able to lower the program current just by controlling the Set current compliance??
Experimental current scaling

- Explanation: influence of parasitic capacitance on the minimum RESET current

L. Goux et al, IEEE TED 2009 (sept 09)
Experimental current scaling

- E.g., off vs on-chip measurements

By controlling the parasitic capacitance, we can reduce program current for a small cell!

K. Kinoshita et al., APPLIED PHYSICS LETTERS 93, 033506, 2008, “Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance”
Limitations of current = ?

Target current:

- Program current < current drive of selector device
 - E.g., @ 10nm technology node (Area ~100nm2):
 - I reset < 8uA!
 - If VReset ~1V, \(\Rightarrow \) Ron > 200kOhm

- Minimum read current
 - If I reset 8uA
 - Vread ~ 0.2V (1/5th of V_{Reset})
 - Iread ~1uA only: close to limit of Sense Amplifier!

Current drive of selector device = critical factor!
Fundamental limitations of OxRRAM

- Due to filamentary nature:
 - Size/current of minimum filament (1-10nm?)
 - If nucleation is defect controlled (e.g. GB):
 - Statistical spread in small cells $f(\text{defect density})$
 - Amorphous MOx could be preferred?
Role of defects in filament formation?

- C-AFM results in NiO

 Very non-uniform leakage distribution.
 Regions of high current are mostly situated at the grain boundaries.

![Topography](image1)

![Current](image2)

Vg = +0.5V

D.Wouters
imec confidential 2009 | 47
Fundamental limitations of OxRRAM

- Due to filamentary nature:
 - Size/current of minimum filament (1-10nm?)
 - If nucleation is defect controlled (e.g. GB):
 - Statistical spread in small cells f(defect density)
 - Amorphous MOx could be preferred?
- Interfacial mechanism better for scalability?
 - But bipolar programming maybe issue...

A. Sawa, Materials Today, Vol 11(6), 2008, p. 28
Outline

• Introduction
• What is a resistive switching device (concept)
 – Focus on unipolar switching RRAM
• Short History of switching in oxide films for memory application
 – Revival of an old idea
• Mechanisms of resistive switching in oxides
 – Unipolar (vs. bipolar) switching in TMO’s
• Scaled OxRRAM for FLASH memory replacement?
 – Scaling prospects of RRAM
• Conclusions
Conclusions

- Unipolar switching in TMO (OxRRAM) is an interesting alternative for scaled NVM

- Models for switching mechanism exist, but need refinement (e.g. to include effects of low-power programming)

- Links with bipolar switching in same material may elucidate switching mechanics (role of vacancies)

- From current extrapolation, scalability is expected to ~10nm node

- Still lack of statistical data, and fundamental scaling limits unclear
NVM Roadmap

Cell size

\[[F^2] \]

Technology node \(F \) [nm]

- NOR-Flash (FG/NROM)
- NAND-Flash (FG)
- MRAM
- FeRAM
- PCM
- 3D SONOS
- OxRRAM

status (production)

disruptive

evolutionary

niche and embedded applications

notes: PCM may be applied in embedded applications as well (65nm)
Time for change?

“Nothing is going to change unless something starts to break”
H.-S. Philip Wong, 2003.11.10, IWFIP

But what needs to breakdown?

Breakdown of Flash scaling

Controlled breakdown in OxRRAM

Fig. 2: Doubling phenomena of memory density every 12 months, supporting a new memory-growth model proposed by the author
C-G Hwang, Samsung
IEDM 2006

Courtesy of Prof.H.Hwang