A stacked SONOS technology with crystalline gate-all-around Si nanowires for full 3D integration

T. Ernst, A. Hubert, G. Molas, B. de Salvo

CEA-LETI, MINATEC, Grenoble, France

thomas.ernst@cea.fr
Outline

- **Introduction**
- Stacked GAA SONOS crystalline nanowire memory
- Comparison of the 3D architectures
- Towards a new full 3D memory structure
- Conclusion
Main issues to scale NAND memories below the 30nm (32Gbit):

- Photolithography (EUV) availability
- Intrinsic physical, electrical and reliability limits
- Difficulty to maintain the current pace of cost reduction
“Traditional” 3D Memory Architecture (1/2)

3D Stacked NAND

Main limit → Increasing the number of stacked layers, Bit cost reduction limited by yield loss and area penalty

[SAMSUNG IEDM06]
“Alternative” 3D Memory Architectures (2/2)

P-BiCS
Toshiba
[Katsumata VLSI 09]

TCAT
Flash
Samsung
[Jang VLSI 09]

VG-NAND,
Samsung
[Kim, VLSI 09]

Main limit → All based on polycrystalline channels, thus limiting NAND performance
Our Approach

Epitaxial (Si/SiGe) superlattice & selective SiGe etching

⇒ Gate-All-Around (GAA) SONOS memory with « crystalline » Si nanowire channels (down to 6nm diameter)
⇒ Comparison with SONOS FinFET cells (FinFlash)
⇒ Towards a full 3D memory with crystalline SiNW channels & straightforward 3D addressing strategy (BL, AG, WL)

© CEA - LETI
Outline

• Introduction
• Stacked GAA SONOS crystalline nanowire memory
• Comparison of the 3D architectures
• Towards a new full 3D memory structure
• Conclusion
Process flow of the stacked GAA SONOS crystalline nanowires memory

1. Selective epitaxy of (Si/SiGe)

2. Si anisotropic dry etching
 + SiGe dry isotropic etching

2.1. Dry sacrificial oxidation
 + H2 annealing

3. ONO deposition
 O/N/O = 6/5/8nm

4. Poly-Si N+ deposition
 + Chemical Mechanical Polishing
 + Gate etching
 + S/D implantation
 + Nitride spacers
 + S/D salicidation
 + BEOL

A. Hubert et al. IEDM 2009
Transfer Characteristics of GAA SONOS SiNW

Good Short Channel Effect control

\(I_{\text{ON}}/I_{\text{OFF}} \) ratio \(\sim 10^8 \)

\(d_{\text{Si}} \sim 6\text{nm} \)
\(L_{\text{G}} \sim 80\text{nm} \)

17nm EOT

\(V_D = 1\text{V} \)
\(V_D = 0.05\text{V} \)

\(I_{\text{ON}} = 5.0\mu\text{A} \)
\(I_{\text{OFF}} = 84\text{fA} \)

SS = 70mV/dec
DIBL = 41mV/V
Program/Erase of GAA SONOS SiNW

Very large programming window
FN achievable thanks to NW geometry (O/N/O = 6/5/8nm)

A. Hubert et al. IEDM 2009
Programming window of GAA SONOS SiNW

\[\Delta V_{Th} = 7.4V \ (10\mu s/100\text{ms programming times}) \]
Suitable for multi-level applications

A. Hubert et al. IEDM 2009
Endurance GAA SONOS SiNW

$\Delta V_{th} = 5V$ after 10^4 cycles (with 0.8V V_{th} shift)

Program: 14V, 10μs
Erase: -16V, 10ms

A. Hubert et al. IEDM 2009
Room Temperature data-retention of GAA SONOS SiNW

No degradation of the retention after 10K cycles

A. Hubert et al. IEDM 2009
High Temperature data-retention of GAA SONOS SiNW

18% charge loss @ 25°C, 50% charge loss @ 200°C

A. Hubert et al. IEDM 2009
Outline

• Introduction

• Stacked GAA SONOS crystalline nanowire memory

• **Comparison of the 3D architectures**

• Towards a new full 3D memory structure

• Conclusion
Comparison of GAA SONOS SiNW and FinFLASH

Same gate stack (O/N/O = 6/5/8nm) and Si-fin height

A. Hubert et al. IEDM 2009
Channel characteristics of the 3 structures

GAA SONOS NW → Improved I_{OFF}, SS, DIBL
Higher I_{ON} with FinFlash and 4Wires
Programming windows

GAA SONOS Nanowire with small cylinder shape greatly enhances the programming efficiency

A. Hubert et al. IEDM 2009
Outline

• Introduction

• Stacked GAA SONOS crystalline nanowire memory

• Comparison of the 3D architectures

• Towards a new full 3D memory structure

• Conclusion
Φ-Flash: concept

Stacked Nanowires

Excellent electrostatic control

High I_{ON} current

+ Limitation of gate isotroping etching

+ Possible use of independent gates

A. Hubert et al. IEDM 2009
Φ-Flash: process flow

1. Selective epitaxy of (Si/SiGe)
2. Si anisotropic dry etching
 + SiGe dry isotropic etching
3. ONO deposition = 6/5/8nm
4. Poly Si N+ deposition
 + Chemical Mechanical Polishing
 + Gate etching
 + S/D implantation
 + Nitride spacers
 + S/D salicidation
 + BEOL

4-Stacked 3D SONOS NW
Outline

• Introduction

• Stacked GAA SONOS crystalline nanowire memory

• Comparison of the 3D architectures

• Towards a new full 3D memory structure

• Conclusion
New 3D memory architecture with crystalline channels

Technology can be derived from the stacked GAA SONOS Silicon nanowire developed process
Full 3D memory: current process developments

Successful separation of the channels along the 10µm nanowires without sticking

Very high density can be achieved by epitaxy
Summary

- First time Stacked GAA SONOS crystalline Si nanowires memory integrated (up to 4 levels) with 6nm diameter shows:
 - excellent programming window up to 7.4V (@$V_P = 18V$ for 10µs)
 - excellent retention
 - $I_{ON}/I_{OFF} \sim 10^8$

- Enhanced memory performances for GAA SONOS nanowires device compared to FinFlash

- Towards a full 3D memory with crystalline Si channels:
 - selective oxidation of SiGe compared to Si
 - large number of epitaxial (Si/SiGe) superlattice
Acknowledgements

This work was supported by the French National Research Agency (ANR) through Carnot Institute funding.