
Challenge 3. 
Challenges in Model Discrepancy 
 
Decision making in physical, social, environmental, biological and health sciences is 
commonly informed by model predictions. It is common to use statistical methods to 
quantify the uncertainty in these predictions due to the uncertainty in model inputs. 
However, methods for quantifying uncertainty due to inadequacy in model structure 
are less developed. This inadequacy, referred to as model discrepancy, can be thought 
of as the difference between a model run at its true input and the true value of the 
output quantity. In other words, model discrepancy arises as a result of the gap 
between a model of reality and reality itself. 
 
“Essentially all models are wrong, but some are useful.” is one of the most common 
quotations in science. The reasons why models are imperfect representations of the 
systems they are meant to describe include the incomplete understanding of the 
system and simplifications made in favour of making computation feasible. Although 
these reasons are widely recognised, quantifying model discrepancy is challenging 
since it requires judgements about a model's ability to represent a complex real life 
decision process faithfully. Solving this problem is of the utmost importance since 
quantifying this inevitable source of uncertainty will provide a principled method of 
compensating for over-confident predictions. 
 
Some of the challenges that will be discussed in this section include, but are not 
limited to: How to represent model discrepancy in a meaningful, informative way? 
How to include relevant prior information provided by experts? How to use model 
discrepancy to learn about model parameters and aide calibration? What are the risks 
for decision making associated with ignoring model discrepancy? How can this risk 
be mitigated? 
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