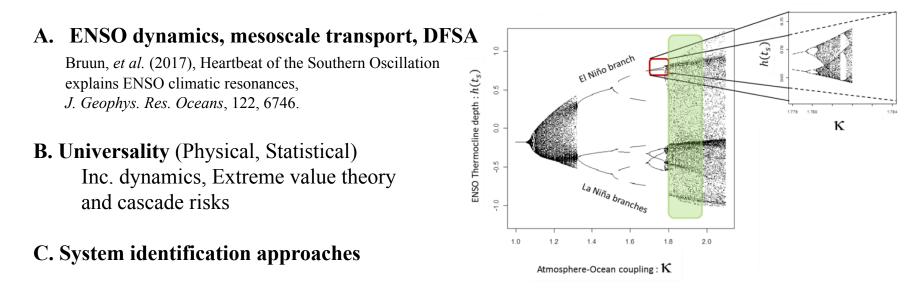
Enhancing earth system decision making with Dominant Frequency State Analysis

John T. Bruun^{1,2} and Katy L Sheen¹

1: University of Exeter, Geography, Pilot project (M2DPP035) <u>k.l.sheen@exeter.ac.uk</u>, j.brunn@exeter.ac.uk

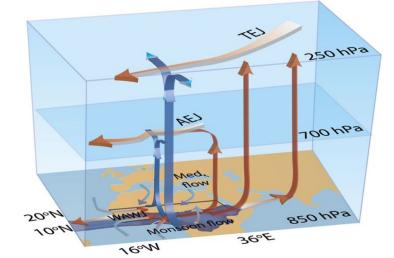

2: Independent Academic (CPhys MInstP) johnbruunphysics@gmail.com IOP Physics Communicators Group, IOP Women in Physics Group, @johnsoundspace

Decision Making Under Uncertainty: M2D Conference 2018, Isaac Newton Institute, Cambridge

Key themes: Food security, physical processes, reducing uncertainty with both sophistication & simplicity, climate physics, Sahel, universality, extreme value processes, dominant frequency state analysis (DFSA)

Red box: some open discussion, M2D extension, collaboration suggestions....

John: Theoretical Physicist (Lancaster, 1994) and communicator


D. Global and local social-economic and policy analysis

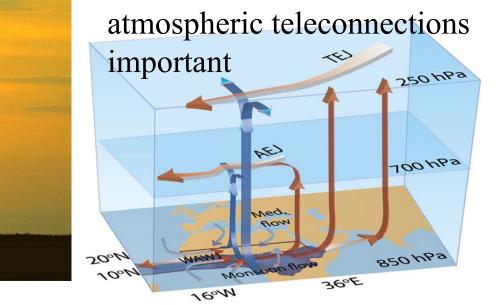
Katy: Physical Geographer (Cambridge, 2010) and communicator

A. Climatic fluid flow dynamics in Southern Ocean

B. Sahel rainfall dynamics and model skill Sheen *et al.* (2017), Skilful prediction of Sahel summer Rainfall on inter-annual and multi-year time scales *Nature Communications*, 8, 14966.

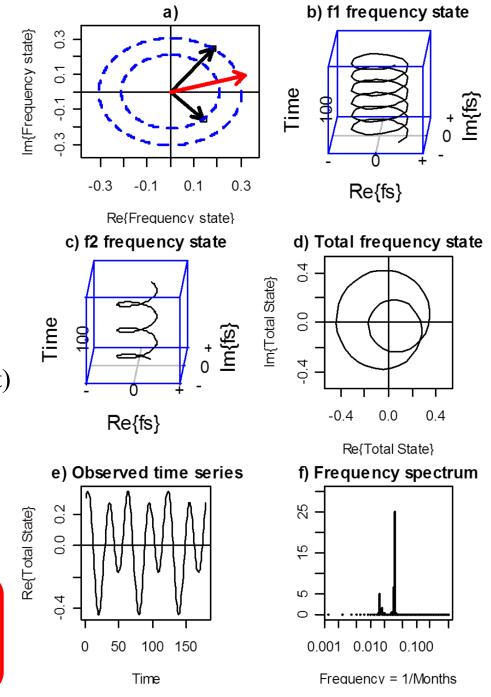

C. Global and regional Aerosol pollution studies

The Sahel rain budget is influenced by planetary scale climatic phenomena



Resilience/food security linked to rain pattern extremes: better understanding enhances our decision making and reduces community risk Using 'traffic light' rain budget risk maps

The dynamics are complex... ENSO impacts arid conditions


© Boyd Norton

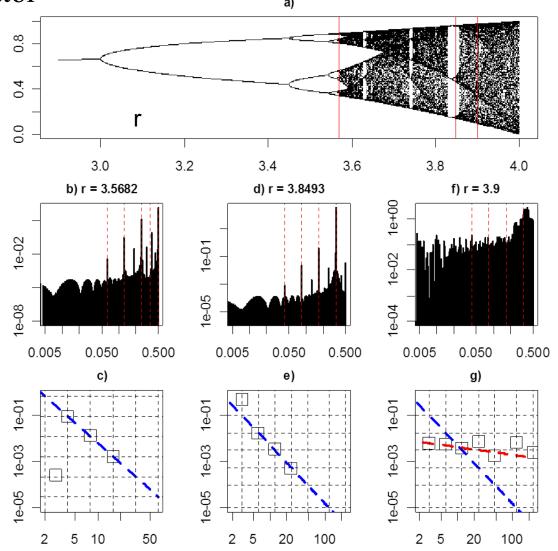
DFSA: motivation non-linear resonance in a periodic dynamic oscillator systems.

- a) Eigenvectors f_1 , f_2 and total combination (scaled red arrow)
- b) f_1 frequency state
- c) f_2 frequency state (1/2 'speed')
- d) total frequency state (period three orbit)
- e) observed time series
- f) frequency spectrum of observed time series.

Apply DFSA to determine Earth System modes for any variable. Dynamic characteristics and coloured noise

Example: Identify and estimate non-linear universal properties of non-linear Periodic oscillator

Using the logistic map (period doubling characteristic)


The eigenvalue spectrum has a universal subharmonic decay:

 $2n^2$: 8.7dB

 $3n^2$: 7.6dB

 $3n^2$ + Intermittency : 1dB

(Feigenbaum, 1980; Bruun et al., 1994, 2017)

Dominant Frequency State Analysis (Basic method)

Eigenvalue equation (*a-priori structure on rhs*)

$$D\left\{\psi(\boldsymbol{r},t)\right\} = \lambda \,\psi(\boldsymbol{r},t) \tag{1}$$

Frequency state decomposition

$$\lambda \psi(\mathbf{r}, t) = \sum_{k=1}^{n} \underline{f}_{k}^{s}(\mathbf{r}, t) = \underline{f}^{s}(\mathbf{r}, t)$$
⁽²⁾

$$\underline{f}_{k}^{s}(t) = A_{k}e^{i(\omega_{k}t + \phi_{k})} = A_{k}\{\cos(\omega_{k}t + \phi_{k}) + i\sin(\omega_{k}t + \phi_{k})\}$$
(3)

Observation of frequency states $y(t) = \sum_{k=1}^{n} Re\left\{\underline{f}_{k}^{s}(\boldsymbol{r}_{o}, t)\right\} + \alpha I(\boldsymbol{r}_{o}, t) + \eta(\boldsymbol{r}_{o}, t)$ (4)

The $\omega_{process} = \{\omega_1, \omega_2, ..., \omega_n\}$ are the a-priori identified dominant frequencies at relevant spatial location $\mathbf{r} = \mathbf{r}_o$, $\alpha I(\mathbf{r}_o, t)$ are intervention terms and η is a noise process.

Example application to ENSO including thresholds

$$\lambda \psi(\mathbf{r}_{o}, t) = ENSO(t) : \begin{cases} \mathbf{r}_{o} = tropical Pacific \\ \mathbf{r}_{o} = tropical and extratropical Pacific \\ \mathbf{r}_{o} = Pacific basin \end{cases}$$
(5)
$$ENSO(t) = \sum_{k=1}^{n} f_{k}^{s}(t) + \eta(t) \quad for A_{-} < \sum_{k=1}^{n} f_{k}^{s}(t) < A_{+}$$
(6)

with $f^{s} = Re\left\{\underline{f}^{s}\right\}$, time *t*, *n* distinct frequency states and random noise (and red-noise) $\eta(t)$ *Estimation with likelihood* $l(\theta)$ *inference (no other estimators can asymptotically be more efficient)* $\nabla_{\theta} \hat{l}(\hat{\theta} \mid \text{observed data}) = 0$ (7)

Extending DFSA to resolve spatio-temporal structure

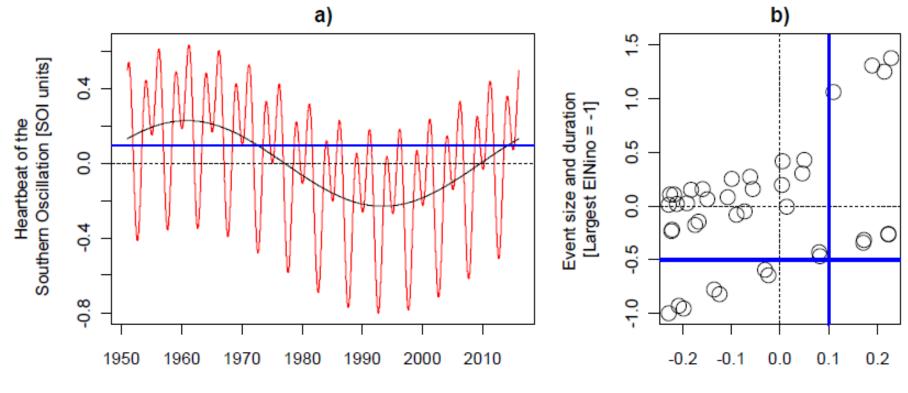
EOF's typically separate the spatial and time components: $\lambda \psi(\mathbf{r}, t) \rightarrow u(\mathbf{r})v(t)$

With DFSA all the spatial dynamic information is mapped onto the time axis, and an assumption of separation is not required.

Map out the dynamic structure of planetary phenomena $\lambda \psi(\mathbf{r}, t)$

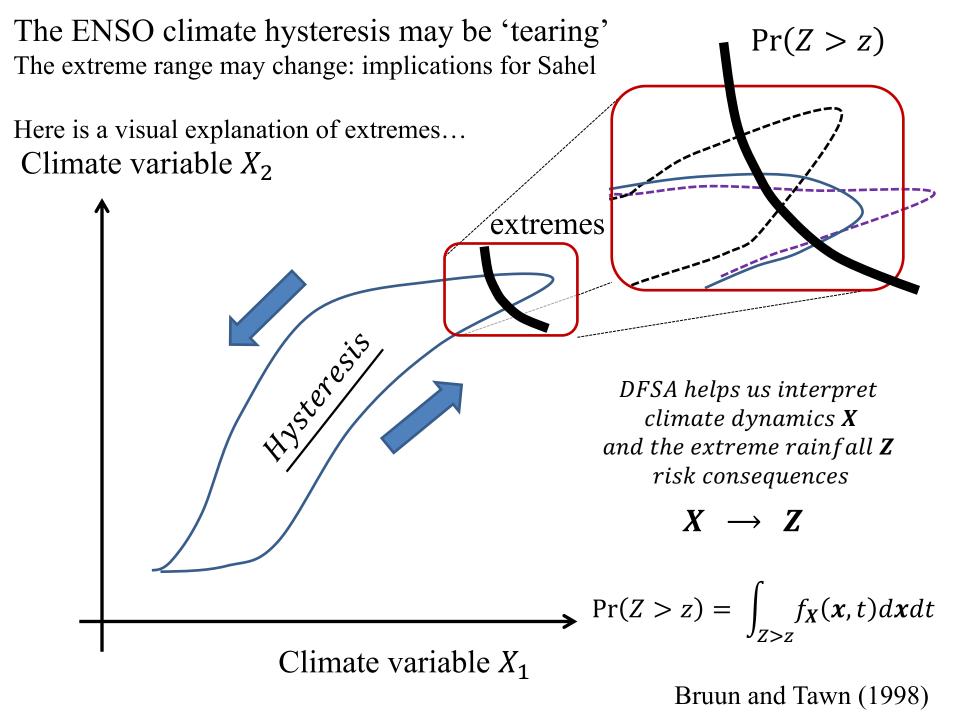
Use a rapid analysis approach $\lambda \psi(r_{ijk}, t) \forall i, j, k \rightarrow v_{ijk}(t)$ Assess heterogeneity through similarity of $v_{ijk}(t)$; $\forall i, j, k$ to give B_l sets.

Sahel downscaling rain budget maps: $Z(\mathbf{r}, t)$


Multiple extensions: Temperature $T(\mathbf{r}, t)$, Velocity $v(\mathbf{r}, t)$, Biomes $B(\mathbf{r}, t)$

Outcome: Greatly improved climate prediction and resolution from ensembles.

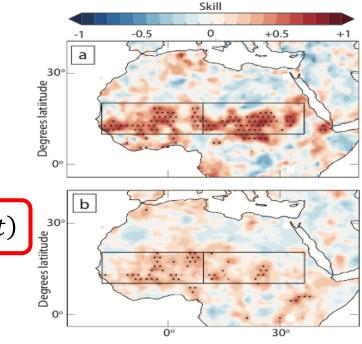
The Heartbeat of the Southern Oscillation


The tropical ENSO attractor with 2.5, 5 and 65 year frequency states:

This attractor structure explains prolonged and contracted ENSO event modulation effects large:small El Niño 2:1 (La Niña 12:1) and the 1970's 'change of state' is a nonlinear threshold effect.

65 yr frequency state

Current conditions indicate the ENSO process is in an unstable warm phase...

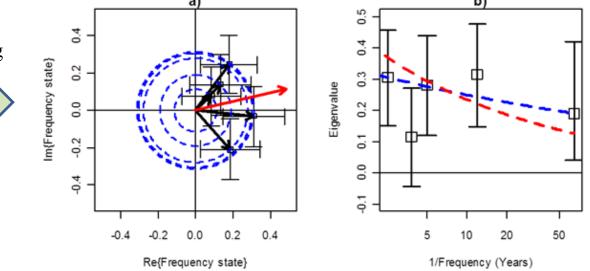


Sahel rain budget, downscaling, DFSA and extremes

Sahel downscaling rain budget cyclic plus other decomposition maps:

 $Z(\mathbf{r},t) = C_S(\mathbf{r},t) + C_L(\mathbf{r},t) + Trend(\mathbf{r},t) + \eta(\mathbf{r},t)$

Seasonal Long term



Degrees longitude

Sahel skill assessment (stipples show significant improvement in boxes above). Regional downscaling has shown potential for good predictive skill in these regions. Sheen *et al.* (2017)

Sahel DFSA

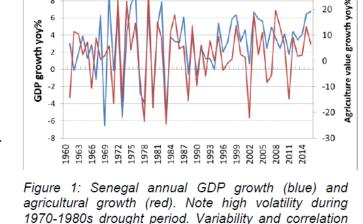
Investigation looks at seasonal, long term and trend decomposition It is shown here for ENSO Bruun *et al.*, (2017)

Food security and resilience:

Assisting Climate Adaptation with Communities In the African Sahel (ACACIAS) (NERC/DIFD SHEAR proposal (PI: Sheen), prepared with M2D help, waiting result).

'Traffic light' risk charts of rain budge

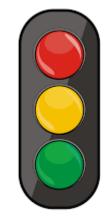
Seasonal, long term modes (DFSA) 1/10 and 1/100 year event extreme risk level (rainfall and arid).


1954 (wet) vs 1984 (dry) assessed Spatial DFSA enhances analysis capacity

Food security: In Sahel countries Gross Domestic Product (GDP) is sensitive to agricultural production.

e.g. in Senegal a 20% change in agricultural growth contributes to a 3.5% change in GDP.

A 3.5 bn\$ per year is vulnerable to agricultural instability and hence climate volatility in Senegal and Ghana (our focus).


Wider analysis: 30bn\$ is at stake in whole Sahel these methods help better understand *resilience* for us all.

are guantified in Table 1. Data from World Bank, 2018.

20

Summary

Coffee cup science

Fractals

- DFSA enables the accurate investigation of low amplitude and low frequency climatic modes
- It complements and extends current methods
- Multiple applications: ENSO, teleconnection, downscaling, ...
- Focus here: Resilience and food security to extreme climate changes
- Improved decision making with sophisticated yet simple models

