Publications

How to acknowledge this action?
Network participants are asked to acknowledge the support of the COST network for their research in quantum thermodynamics by one of the following statements:
  • This work was partially supported by the COST Action MP1209.
  • Part of this work was supported by the COST Action MP1209 “Thermodynamics in the quantum regime”.
  • This work was supported by the COST Action  MP1209.
  • This work was made possible by the COST Action MP1209.
Publications acknowledging COST from the Fourth Year of the Action
  1. Campbell, S. and Deffner, S. Trade-off between speed and cost in shortcuts to adiabaticity,. Phys. Rev. Lett. 118, 100601 (2017).
  2. Zheng, Y., Campbell, S., De Chiara, G., and Poletti, D. Cost of counterdiabatic driving and work output,. Phys. Rev. A 94, 42132 (2016).
  3. Garcia-March, M. A., Fogarty, T., Campbell, S., Busch, T., and Paternostro, M. Non-Equilibrium Thermodynamics of Harmonically Trapped Bosons,. New J. Phys. 18, 103035 (2016).
  4. Campbell, S. Criticality revealed through quench dynamics the Lipkin-Meshkov-Glick model,. Phys. Rev. B 94, 184403 (2016).
  5. Ali Ümit Cemal Hardal * and Özgür Esat Müstecaplıoğlu. Rényi Divergences, Bures Geometry and Quantum Statistical Thermodynamics. Entropy 18, 455 (2016).
  6. R. Schmidt, S. Maniscalco, and T. A.-N. Heat flux and information backflow in cold environments. Phys. Rev. A 94, 010101(R) (2016).
  7. Benenti, Giuliano, Casati, Giulio, Saito, Keiji, Whitney, R. S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. arXiv:1608.05595 (2016).
  8. De Pasquale, A., Rossini, D., Fazio, R. & Giovannetti, V. Local quantum thermal susceptibility. Nat. Commun. 7, 12782 (2016).
  9. Barra Felipe and Esposito Massimiliano. Dissipation in small systems: Landau-Zener approach. Phys. Rev. E 93, 62118 (2016).
  10. Cifuentes, A. A., Nicacio, F., Paternostro, M. & Semião, F. L. Nonequilibrium properties of trapped ions under sudden application of a laser. (2016).
  11. Bruschi, D. E. & Fuentes, I. Thermodynamics of relativistic quantum fields: extracting energy from gravitational waves.
  12. Manzano, G., Galve, F., Zambrini, R. & Parrondo, J. M. R. Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93, 52120 (2016).
  13. Gogolin, C. & Eisert, J. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys. 79, 56001 (2016).
Publications acknowledging COST from the Third Year of the Action
  1. Bassa, H. et al. Process tomography via sequential measurements on a single quantum system. Phys. Rev. A 92, 032102 (2015).
  2. Campisi, M. Construction of microcanonical entropy on thermodynamic pillars. Phys. Rev. E 91, 052147 (2015).
  3. Campisi, M., Jukka, P. & Fazio Rosario. Nonequilibrium fluctuations in quantum heat engines: theory, example, and possible solid state experiments. New Journal of Physics, 1367-2630_17_3_035012 (2015).
  4. Diósi, L. Is spontaneous wave function collapse testable at all? J. Phys. Conf. Ser. 626, 012008 (2015).
  5. Diósi, L. Testing spontaneous wave-function collapse models on classical mechanical oscillators. Phys. Rev. Lett. 114, 050403 (2015).
  6. Elouard, C., Richard, M. & Auffèves, A. Reversible work extraction in a hybrid opto-mechanical system. New J. Phys. 17, 055018 (2015).
  7. Ford, I. J. Maxwell’s demon and the management of ignorance in stochastic thermodynamics. Contemp. Phys. 1–22. doi:10.1080/00107514.2015.1121604 (2016).
  8. Gogolin & J. Eisert. Equilibrium, thermalisation and the emergence of statistical mechanics in closed quantum systems. C. Gogolin & J Eisert http-::arxiv.org:abs:1503.07538
  9. Hardal, A. Ü. C. & Müstecaplıoğlu, Ö. E. Superradiant Quantum Heat Engine. Sci. Rep. 5, 12953 (2015).
  10. Hofer, P. P. & Sothmann, B. Quantum heat engines based on electronic Mach-Zehnder interferometers. Phys. Rev. B 91, 195406 (2015).
  11. Kammerlander, P. & Anders, J. Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016).
  12. Liu, N. et al. Quantum thermodynamics for a model of an expanding Universe. Class. Quantum Gravity 33, 035003 (2016).
  13. Manzano, G., Horowitz, J. M. & Parrondo, J. M. R. Nonequilibrium potential and fluctuation theorems for quantum maps. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 92, 032129 (2015).
  14. Mazza, F. et al. Separation of heat and charge currents for boosted thermoelectric conversion. Phys. Rev. B 91, 245435 (2015).
  15. Millen, J. & Xuereb, A. Perspective on quantum thermodynamics. New J. Phys. 18, 011002 (2016).
  16. Parra-Murillo, C. A., Madroñero, J. & Wimberger, S. Exact numerical methods for a many-body Wannier–Stark system. Comput. Phys. Commun. 186, 19–30 (2015).
  17. Pikovski, I., Zych, M., Costa, F. & Brukner, Č. Universal decoherence due to gravitational time dilation. Nat. Phys. 4 (2015). at <http://arxiv.org/abs/1311.1095
  18. Rossnagel, J. et al. A single-atom heat engine. Science (80-. ). 352, 325–329 (2016).
  19. Sánchez, R., Sothmann, B. & Jordan, A. N. Heat diode and engine based on quantum Hall edge states. New J. Phys. 17, 075006 (2015).

  20. Thierschmann, H. et al. Three-terminal energy harvester with coupled quantum dots. Nat. Nanotechnol. 10, 854–858 (2015).

  21. Valentini, S., Governale, M., Fazio, R. & Taddei, F. Finite-frequency noise in a topological superconducting wire. Phys. E Low-dimensional Syst. Nanostructures 75, 15–21 (2016).
    Publications acknowledging COST from the Second Year of the Action
  1. Altintas, F., Hardal, A. Ü. C. & Müstecaplıoğlu, Ö. E. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits. Phys. Rev. A 91, 023816 (2015).
  2. Altintas, F., Hardal, A. Ü. C. & Müstecaplıog̃lu, Ö. E. Quantum correlated heat engine with spin squeezing. Phys. Rev. E 90, 032102 (2014).
  3. Apollaro, T. J. G., Francica, G., Paternostro, M. & Campisi, M. Work statistics, irreversible heat and correlations build-up in joining two spin chains. 9 (2014). at <http://arxiv.org/abs/1406.0648>
  4. Batalhao, T. B. et al. Irreversibility and the arrow of time in a quenched quantum system. 8 (2015). at <http://arxiv.org/abs/1502.06704>
  5. Battista, F., Haupt, F. & Splettstoesser, J. Energy and power fluctuations in ac-driven coherent conductors. Phys. Rev. B 90, 085418 (2014).
  6. Binder, F., Vinjanampathy, S., Modi, K. & Goold, J. Quantum thermodynamics of general quantum processes. Phys. Rev. E 91, 032119 (2015).
  7. Brunelli, M. et al. Out-of-equilibrium thermodynamics of quantum optomechanical systems. New J. Phys. 17, 035016 (2015).
  8. Campbell, S., De Chiara, G., Paternostro, M., Palma, G. M. & Fazio, R. Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model. Phys. Rev. Lett. 114, 177206 (2015).
  9. Chiara, G. De, Roncaglia, A. J. & Paz, J. P. Measuring work and heat in ultracold quantum gases. New J. Phys. 17, 035004 (2015).
  10. Diósi, L. & Ferialdi, L. General non-markovian structure of Gaussian master and stochastic Schrödinger equations. Phys. Rev. Lett. 113, 200403 (2014).
  11. Esposito, M. & Parrondo, J. M. R. Stochastic thermodynamics of hidden pumps. Phys. Rev. E 91, 052114 (2015).
  12. Faist, P., Oppenheim, J. & Renner, R. Gibbs-preserving maps outperform thermal operations in the quantum regime. New J. Phys. 17, 043003 (2015).
  13. Frenzel, M. F., Jennings, D. & Rudolph, T. Reexamination of pure qubit work extraction. Phys. Rev. E 90, 052136 (2014).
  14. Gemmer, J. & Anders, J. From single-shot towards general work extraction in a quantum thermodynamic framework. (2015). at <http://arxiv.org/abs/1504.05061>
  15. Goold, J., Paternostro, M. & Modi, K. Nonequilibrium Quantum Landauer Principle. Phys. Rev. Lett. 114, 060602 (2015).
  16. Hassler, F. & Splettstoesser, J. Measurement and dephasing of a flux qubit due to heat currents. New J. Phys. 16, 045020 (2014).
  17. Haupt, F. et al. Heat, molecular vibrations, and adiabatic driving in non-equilibrium transport through interacting quantum dots. Phys. status solidi 250, 2315–2329 (2013).
  18. Juergens, S., Haupt, F., Moskalets, M. & Splettstoesser, J. Thermoelectric performance of a driven double quantum dot. Phys. Rev. B 87, 245423 (2013).
  19. Kammerlander, P. & Anders, J. Quantum measurement and its role in thermodynamics. 5 (2015). at <http://arxiv.org/abs/1502.02673>
  20. Lorenzo, S., McCloskey, R., Ciccarello, F., Paternostro, M. & Palma, G. M. Landauer’s principle in multipartite open quantum system dynamics. 5 (2015). at <http://arxiv.org/abs/1503.07837>
  21. Lostaglio, M., Jennings, D. & Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015).
  22. Lostaglio, M., Korzekwa, K., Jennings, D. & Rudolph, T. Quantum Coherence, Time-Translation Symmetry, and Thermodynamics. Phys. Rev. X 5, 021001 (2015).
  23. Mazza, F. et al. Thermoelectric efficiency of three-terminal quantum thermal machines. New J. Phys. 16, 085001 (2014).
  24. Nicacio, F., Ferraro, A., Imparato, A., Paternostro, M. & Semião, F. L. Thermal transport in out-of-equilibrium quantum harmonic chains. Phys. Rev. E 91, 042116 (2015).
  25. Parrondo, J. M. R., Horowitz, J. M. & Sagawa, T. Thermodynamics of information. Nat. Phys. 11, 131–139 (2015).
  26. Pigeon, S. et al. Dynamical symmetries and crossovers in a three-spin system with collective dissipation. New J. Phys. 17, 015010 (2015).
  27. Pigeon, S., Fusco, L., Xuereb, A., De Chiara, G. & Paternostro, M. Thermodynamics of trajectories of a quantum harmonic oscillator coupled to $N$ baths. 5 (2014). at <http://arxiv.org/abs/1411.2637>
  28. Plastina, F. et al. Irreversible Work and Inner Friction in Quantum Thermodynamic Processes. Phys. Rev. Lett. 113, 260601 (2014).
  29. Rahav, S. & Harbola, U. An integral fluctuation theorem for systems with unidirectional transitions. J. Stat. Mech. Theory Exp. 2014, P10044 (2014).
  30. Sánchez, R., Sothmann, B. & Jordan, A. N. Chiral Thermoelectrics with Quantum Hall Edge States. Phys. Rev. Lett. 114, 146801 (2015).
  31. Sothmann, B., Sánchez, R. & Jordan, A. N. Thermoelectric energy harvesting with quantum dots. Nanotechnology 26, 032001 (2015).
  32. Sothmann, B., Sánchez, R. & Jordan, A. N. Quantum Nernst engines. EPL (Europhysics Lett. 107, 47003 (2014).
  33. Thingna, J., Hänggi, P., Fazio, R. & Campisi, M. Geometric quantum pumping in the presence of dissipation. Phys. Rev. B 90, 094517 (2014).
  34. Uzdin, R. & Kosloff, R. The multilevel four-stroke swap engine and its environment. New J. Phys. 16, 095003 (2014).
Publications acknowledging COST from the First Year of the Action
  1. Abah, O. & Lutz, E. Efficiency of heat engines coupled to nonequilibrium reservoirs. EPL (Europhysics Lett. 106, 20001 (2014).
  2. Allahverdyan, A. E., Hovhannisyan, K. V., Melkikh, A. V. & Gevorkian, S. G. Carnot Cycle at Finite Power: Attainability of Maximal Efficiency. Phys. Rev. Lett. 111, 050601 (2013).
  3. Allahverdyan, A. & Wang, Q. Adaptive machine and its thermodynamic costs. Phys. Rev. E 87, 032139 (2013).
  4. Anders, J. & Giovannetti, V. Thermodynamics of discrete quantum processes. New J. Phys. 15, 033022 (2013).
  5. Beretta, G. P. Steepest-Entropy-Ascent and Maximal-Entropy-Production Dynamical Models of Irreversible Relaxation to Stable Equilibrium from Any Non-Equilibrium State. Unified Treatment for Six Non-Equilibrium Frameworks. (2013). at <http://arxiv.org/abs/1306.3173>
  6. Beretta, G. P. Steepest entropy ascent paths towards the Max-Ent distribution. 6 (2013). at <http://arxiv.org/abs/1312.5043>
  7. Binder, F., Vinjanampathy, S., Modi, K. & Goold, J. Operational thermodynamics of open quantum systems. 5 (2014). at <http://arxiv.org/abs/1406.2801>
  8. Brunner, N. et al. Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014).
  9. Bulnes Cuetara, G., Esposito, M., Schaller, G. & Gaspard, P. Effective fluctuation theorems for electron transport in a double quantum dot coupled to a quantum point contact. Phys. Rev. B 88, 115134 (2013).
  10. Burovski, E., Cheianov, V., Gamayun, O. & Lychkovskiy, O. Momentum relaxation of a mobile impurity in a one-dimensional quantum gas. Phys. Rev. A 89, 041601 (2014).
  11. Campisi, M. Quantum fluctuation relations for ensembles of wave functions. New J. Phys. 15, 115008 (2013).
  12. Campisi, M. Fluctuation relation for quantum heat engines and refrigerators. J. Phys. A Math. Theor. 47, 245001 (2014).
  13. Campisi, M., Blattmann, R., Kohler, S., Zueco, D. & Hänggi, P. Employing circuit QED to measure non-equilibrium work fluctuations. New J. Phys. 15, 105028 (2013).
  14. Cano-Andrade, S., von Spakovsky, M. R. & Beretta, G. P. Steepest-Entropy-Ascent Quantum Thermodynamic Non-Equilibrium Modeling of Decoherence of a Composite System of Two Interacting Spin-½ Systems. in Vol. 8B Heat Transf. Therm. Eng. V08BT09A043 (ASME, 2013). at <http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1858768>
  15. Carlisle, A. et al. Out of equilibrium thermodynamics of quantum harmonic chains. 10 (2014). at <http://arxiv.org/abs/1403.0629>
  16. Correa, L. A., Palao, J. P., Alonso, D. & Adesso, G. Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014).
  17. Correa, L. A. Multistage quantum absorption heat pumps. Phys. Rev. E 89, 042128 (2014).
  18. Correa, L. A., Palao, J. P., Adesso, G. & Alonso, D. Performance bound for quantum absorption refrigerators. Phys. Rev. E 87, 042131 (2013).
  19. Deng, J., Wang, Q., Liu, Z., Hanggi, P. & Gong, J. Boosting work characteristics and overall heat engine performance via shortcuts to adiabaticity: quantum and classical systems. 8 (2013). at <http://arxiv.org/abs/1307.4182>
  20. Fusco, L. et al. Assessing the Nonequilibrium Thermodynamics in a Quenched Quantum Many-Body System via Single Projective Measurements. Phys. Rev. X 4, 031029 (2014).
  21. Gelbwaser-Klimovsky, D., Alicki, R. & Kurizki, G. Work and energy gain of heat-pumped quantized amplifiers. EPL (Europhysics Lett. 103, 60005 (2013).
  22. Gelbwaser-Klimovsky, D., Erez, N., Alicki, R. & Kurizki, G. Work extraction via quantum nondemolition measurements of qubits in cavities: Non-Markovian effects. Phys. Rev. A 88, 022112 (2013).
  23. Genes, C., Xuereb, A., Pupillo, G. & Dantan, A. Enhanced optomechanical readout using optical coalescence. Phys. Rev. A 88, 033855 (2013).
  24. Goold, J., Paternostro, M. & Modi, K. A non-equilibrium quantum Landauer principle. 5 (2014). at <http://arxiv.org/abs/1402.4499>
  25. Goold, J., Poschinger, U. & Modi, K. Measuring the heat exchange of a quantum process. Phys. Rev. E 90, 020101 (2014).
  26. Gour, G., Müller, M. P., Narasimhachar, V., Spekkens, R. W. & Halpern, N. Y. The resource theory of informational nonequilibrium in thermodynamics. 51 (2013). at <http://arxiv.org/abs/1309.6586>
  27. Horowitz, J. M. & Parrondo, J. M. R. Entropy production along nonequilibrium quantum jump trajectories. New J. Phys. 15, 085028 (2013).
  28. Horowitz, J. M., Sagawa, T. & Parrondo, J. M. R. Imitating Chemical Motors with Optimal Information Motors. Phys. Rev. Lett. 111, 010602 (2013).
  29. Hovhannisyan, K., Perarnau-Llobet, M., Huber, M. & Acín, A. Entanglement Generation is Not Necessary for Optimal Work Extraction. Phys. Rev. Lett. 111, 240401 (2013).
  30. Huber, M. et al. Thermodynamic cost of creating correlations. (2014). at <http://arxiv.org/abs/1404.2169>
  31. Huber, M. et al. Thermodynamic cost of creating correlations. 8 (2014). at <http://arxiv.org/abs/1404.2169>
  32. Jensen, A. XVIIth International Congress on Mathematical Physics. 21 (WORLD SCIENTIFIC, 2013). at <http://arxiv.org/abs/1211.3141>
  33. Jordan, A., Sothmann, B., Sánchez, R. & Büttiker, M. Powerful and efficient energy harvester with resonant-tunneling quantum dots. Phys. Rev. B 87, 075312 (2013).
  34. Kosloff, R. Quantum Thermodynamics: A Dynamical Viewpoint. Entropy 15, 2100–2128 (2013).
  35. Kosloff, R. & Levy, A. Quantum heat engines and refrigerators: continuous devices. Annu. Rev. Phys. Chem. 65, 365–93 (2014).
  36. Liu, S., Hänggi, P., Li, N., Ren, J. & Li, B. Anomalous Heat Diffusion. Phys. Rev. Lett. 112, 040601 (2014).
  37. Liu, S., Hänggi, P., Li, N., Ren, J. & Li, B. Anomalous Heat Diffusion. Phys. Rev. Lett. 112, 040601 (2014).
  38. Lostaglio, M., Jennings, D. & Rudolph, T. Thermodynamic laws beyond free energy relations. 11 (2014). at <http://arxiv-web3.library.cornell.edu/abs/1405.2188>
  39. Lychkovskiy, O. Perpetual motion of a mobile impurity in a one-dimensional quantum gas. Phys. Rev. A 89, 033619 (2014).
  40. Mazzola, L., De Chiara, G. & Paternostro, M. Detecting the work statistics through Ramsey-like interferometry. (2014). at <http://xxx.tau.ac.il/abs/1401.0566>
  41. Millen, J., Deesuwan, T., Barker, P. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 425–9 (2014).
  42. Mueller, M. P., Adlam, E., Masanes, L. & Wiebe, N. Thermalization and canonical typicality in translation-invariant quantum lattice systems. 46 (2013). at <http://arxiv.org/abs/1312.7420>
  43. Nietner, C., Schaller, G. & Brandes, T. Transport with ultracold atoms at constant density. Phys. Rev. A 89, 013605 (2014).
  44. Parra-Murillo, C. A., Madroñero, J. & Wimberger, S. Quantum diffusion and thermalization at resonant tunneling. Phys. Rev. A 89, 053610 (2014).
  45. Roldán, É., Martínez, I. A., Parrondo, J. M. R. & Petrov, D. Universal features in the energetics of symmetry breaking. Nat. Phys. 10, 457–461 (2014).
  46. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K. & Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 112, 030602 (2014).
  47. Sánchez, R., Sothmann, B., Jordan, A. N. & Büttiker, M. Correlations of heat and charge currents in quantum-dot thermoelectric engines. New J. Phys. 15, 125001 (2013).
  48. Schaller, G., Vogl, M. & Brandes, T. Transport as a sensitive indicator of quantum criticality. J. Phys. Condens. Matter 26, 265001 (2014).
  49. Sindona, A., Goold, J., Lo Gullo, N. & Plastina, F. Statistics of the work distribution for a quenched Fermi gas. New J. Phys. 16, 045013 (2014).
  50. Sothmann, B., Sánchez, R., Jordan, A. N. & Büttiker, M. Powerful energy harvester based on resonant-tunneling quantum wells. New J. Phys. 15, 095021 (2013).
  51. Steinigeweg, R., Khodja, A., Niemeyer, H., Gogolin, C. & Gemmer, J. Pushing the Limits of the Eigenstate Thermalization Hypothesis towards Mesoscopic Quantum Systems. Phys. Rev. Lett. 112, 130403 (2014).
  52. Strasberg, P., Schaller, G., Brandes, T. & Esposito, M. Thermodynamics of quantum-jump-conditioned feedback control. Phys. Rev. E 88, 062107 (2013).
  53. Talkner, P., Morillo, M., Yi, J. & Hänggi, P. Statistics of work and fluctuation theorems for microcanonical initial states. New J. Phys. 15, 095001 (2013).
  54. Torrontegui, E. & Kosloff, R. Quest for absolute zero in the presence of external noise. Phys. Rev. E 88, 032103 (2013).
  55. Ulm, S. et al. Observation of the Kibble-Zurek scaling law for defect formation in ion crystals. Nat. Commun. 4, 2290 (2013).
  56. Watanabe, G., Venkatesh, B. P., Talkner, P., Campisi, M. & Hänggi, P. Quantum fluctuation theorems and generalized measurements during the force protocol. Phys. Rev. E 89, 032114 (2014).
  57. Whitney, R. Thermodynamic and quantum bounds on nonlinear dc thermoelectric transport. Phys. Rev. B 87, 115404 (2013).
  58. Whitney, R. S. Most Efficient Quantum Thermoelectric at Finite Power Output. Phys. Rev. Lett. 112, 130601 (2014).
  59. Whitney, R. S. Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling. Phys. Rev. B 88, 064302 (2013).
  60. Xuereb, A., Genes, C. & Dantan, A. Collectively enhanced optomechanical coupling in periodic arrays of scatterers. Phys. Rev. A 88, 053803 (2013).
  61. Xuereb, A., Genes, C., Pupillo, G., Paternostro, M. & Dantan, A. Reconfigurable Long-Range Phonon Dynamics in Optomechanical Arrays. Phys. Rev. Lett. 112, 133604 (2014).
  62. Xuereb, A., Ulbricht, H. & Paternostro, M. Optomechanical interface for probing matter-wave coherence. Sci. Rep. 3, 3378 (2013).
  63. Zanchini, E. & Beretta, G. Recent Progress in the Definition of Thermodynamic Entropy. Entropy 16, 1547–1570 (2014).
  64. Zhang, J., Zhang, T., Xuereb, A., Vitali, D. & Li, J. More nonlocality with less entanglement in a tripartite atom-optomechanical system. 7 (2014). at <http://arxiv.org/abs/1402.3872>
A preliminary list of references in the field of quantum information and foundations of thermodynamics. See also our Mendeley group.

 

A.E. Allahverdyan, K. V. Hovhannisyan, D. Janzing, G. Mahler,  “Thermodynamic limits of dynamic cooling”, Phys. Rev. E 84, 041109 (2011). [DOI: 10.1103/PhysRevE.84.041109]

J. Anders, S. Shabbir, S. Hilt, E. Lutz, “Landauer’s principle in the quantum domain”, Elect. Proc. Comp. Sci. 26:13 (2010). [arXiv] [DOI: 10.4204/EPTCS.26.2]

V. Blickle, C. Bechinger, “Realization of a micrometre-sized stochastic heat engine”, Nature Physics (2011).  [DOI: 10.1038/nphys2163]

J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Groeblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state”,  Nature 478, 89 (2011). [DOI: 10.1038/nature10461]

M. Cramer, C.M. Dawson, J. Eisert, T.J. Osborne, “Exact relaxation in a class of non-equilibrium quantum lattice systems”, Phys. Rev. Lett. 100, 030602 (2008). [arXiv] [DOI: 10.1103/PhysRevLett.100.030602]

M. Cramer, J. Eisert, “A quantum central limit theorem for non-equilibrium systems: Exact local relaxation of correlated states”, New J. Phys. 12, 055020 (2010). [arXiv]

M. Cramer, C.M. Dawson, J. Eisert, T.J. Osborne, “Exact relaxation in a class of non-equilibrium quantum lattice systems”, Phys. Rev. Lett. 100, 030602 (2008). [arXiv] [DOI: 10.1103/PhysRevLett.100.030602]

S. Deffner, E. Lutz, “Generalized Clausius inequality for nonequilibrium quantum processes”, Phys. Rev. Lett. 105, 170402 (2010). [DOI: 10.1103/PhysRevLett.105.170402]

S. Deffner, E. Lutz, “Nonequilibrium entropy production for open quantum systems”, Phys. Rev. Lett. 107, 140404 (2011). [DOI: 10.1103/PhysRevLett.107.140404]

R. Dillenschneider, E. Lutz, “Energetics of quantum correlations”, EPL 88, 50003 (2009). [arXiv] [DOI: 10.1209/0295-5075/88/50003]

R. Dillenschneider and E. Lutz, “Memory erasure in small systems”, Phys. Rev. Lett. 102, 210601 (2009). [arXiv] [DOI: 10.1103/PhysRevLett.102.210601]

C. Gogolin, M. P. Müller, J. Eisert, “Absence of thermalization in nonintegrable systems”, Phys. Rev. Lett. 106, 040401 (2011).  [arXiv] [DOI: 10.1103/PhysRevLett.106.040401]

C. Gogolin, “Pure state quantum statistical mechanics”,  (2010). [arXiv]

C. Gogolin, “Pure state quantum statistical mechanics”, Phys. Rev. E 81, 051127 (2010), [arXiv] [DOI: 10.1103/PhysRevE.81.051127]

M. Hartmann, G. Mahler, and O. Hess, “Existence of temperature on the nanoscale”, Phys. Rev. Lett. 93, 080402 (2004), [DOI: 10.1103/PhysRevLett.93.080402]

M. Hossein Partovi, “Quantum Thermodynamics”, Phys. Let. A 137, 440-444 (1989), [DOI: 10.1016/0375-9601(89)90221-1]

D. Janzing, “On the computational power of molecular heat engines”, J. Stat. Phys. (2005). [DOI: 10.1007/s10955-005-8015-9]

D. Janzing, “Is there a physically universal cellular automaton or Hamiltonian?”,   (2010). [arXiv]

D. Janzing, P. Wocjan, R. Zeier, R. Geiss, T. Beth, “Thermodynamic cost of reliability and low temperatures: Tightening Landauer’s principle and the Second Law”, Int. J. Theor. Phys. (2000) .[arXiv]

M. Kastner, “Diverging equilibration times in long-range quantum spin models”, Phys. Rev. Lett. 106, 130601 (2011). [arXiv] [DOI: 10.1103/PhysRevLett.106.130601]

S. W. Kim, T. Sagawa, S. De Liberato, M. Ueda, “Quantum Szilard engine”, Phys. Rev. Lett. 106, 070401 (2011). [arXiv] [DOI: 10.1103/PhysRevLett.106.070401]

T. Kinoshita, T. Wenger, D. S. Weiss, “A quantum Newton’s cradle”, Nature 440, 900 (2006). [DOI: 10.1038/nature04693]

A. Lenard, “Thermodynamical proof of the Gibbs formula for elementary quantum systems”, J. Stat. Phys. 17, 575-586 (1978). [DOI: 10.1007/BF01011769]

N. Linden, S. Popescu, A. Short, A. Winter, “Quantum mechanical evolution towards thermal equilibrium”, Phys. Rev. E 79:061103 (2009). [DOI: 10.1103/PhysRevE.79.061103]

A. Mari, J. Eisert, “Cooling by heating: very hot thermal light can significantly cool quantum systems”, Phys. Rev. Lett. 108. 120602 (2012). [DOI: 10.1103/PhysRevLett.108.120602]

M. Müller, O. Dahlsten, V. Vedral, “Unifying typical entanglement and coin tossing: on randomization in probabilistic theories”, (2011). [arXiv]

M. Müller, D. Gross, J. Eisert, “Concentration of measure for quantum states with a fixed expectation value”, Comm. Math. Phys. 303, 785 (2011). [DOI: 10.1007/s00220-011-1205-1]

S. Popescu, A. Short, A. Winter, “Entanglement and the foundations of statistical mechanics”, Nature Physics 2, 754-758 (2006). [arXiv] [DOI: 10.1038/nphys444]

J. Rau, “Inferring the Gibbs state of a small quantum system”, Phys. Rev. A 84, 012101 (2011) . [DOI:10.1103/PhysRevA.84.012101]

J. Rau, “Reconstructing the relaxation dynamics induced by an unknown heat bath”, Physics Letters A 376, 370-373 (2012). [arXiv]  [DOI: 10.1016/j.physleta.2011.12.007]

P. Reimann, “Foundation of Statistical Mechanics under experimentally realistic conditions”, Phys. Rev. Lett. 101, 190403 (2008). [DOI: 10.1103/PhysRevLett.101.190403]

A. Riera, C. Gogolin, J. Eisert, “Thermalization in nature and on a quantum computer”, Phys. Rev. Lett. 108, 080402 (2012). [DOI: 10.1103/PhysRevLett.108.080402]

L. del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, “The thermodynamic meaning of negative entropy”, Nature 474 (2011). [arXiv] [DOI: 10.1038/nature10123]

T. Sagawa and M. Ueda, “Second law of thermodynamics with discrete quantum feedback control”, Phys. Rev. Lett. 100, 080403 (2008). [DOI: 10.1103/PhysRevLett.100.080403]

T. Sagawa and M. Ueda, “Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure”, Phys. Rev. Lett. 102, 250602 (2009). [DOI: 10.1103/PhysRevLett.102.250602]

T. Sagawa, M. Ueda, “Generalized Jarzynski Equality under Nonequilibrium Feedback Control”, Phys. Rev. Lett. 104, 090602 (2010). [DOI: 10.1103/PhysRevLett.104.090602]

P. G. Steeneken, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort, J. T. M. van Beek, “Piezoresistive heat engine and refrigerator”, Nature Physics 7, 354–359 (2011). [arXiv]  [DOI: 10.1038/nphys1871]

S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, “Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality”, Nature Physics, 6, 988 (2010). [DOI: 10.1038/nphys1821]

S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwoeck, J. Eisert, I. Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated 1D Bose gas”, Nature Physics (2012). [arXiv] [DOI: 10.1038/nphys2232]

J.A. Vaccaro and S.M. Barnett, “Information erasure without an energy cost”, Proc. R. Soc. Lond. A 467, 1770-1778 (2011). [DOI] [arXiv:1004.5330].

 

Publications by COSTMP1209 Action Participants. See also our Mendeley group.

Abah, O. et al. Single ion heat engine with maximum efficiency at maximum power. 5 (2012). at <http://arxiv.org/abs/1205.1362>

Åberg, J. Truly work-like work extraction. (2011). at <http://arxiv.org/abs/1110.6121>

Alicki, R., Horodecki, M., Horodecki, P. & Horodecki, R. Thermodynamics of Quantum Information Systems — Hamiltonian Description. Open Syst. Inf. Dyn. 11, 205–217 (2004).

Alicki, R., Horodecki, M., Horodecki, P. & Horodecki, R. Thermodynamics of Quantum Information Systems — {H}amiltonian Description. Open Syst. Inf. Dyn. 11, 205–217 (2004).

Allahverdyan, A. & Nieuwenhuizen, T. Breakdown of the Landauer bound for information erasure in the quantum regime. Phys. Rev. E 64, 056117 (2001).

Allahverdyan, A. E., Balian, R. & Nieuwenhizen, T. I. M. Maximal work extractions from finite quantum systems. Europhys. Lett. 67, 565–571 (2004).

Allahverdyan, A., Hovhannisyan, K., Janzing, D. & Mahler, G. Thermodynamic limits of dynamic cooling. Phys. Rev. E 84, (2011).

Anders, J., Shabbir, S., Hilt, S. & Lutz, E. Landauer’s principle in the quantum domain. Electron. Proc. Theor. Comput. Sci. 26, 13–18 (2010).

Bañuls, M., Cirac, J. & Hastings, M. Strong and Weak Thermalization of Infinite Nonintegrable Quantum Systems. Phys. Rev. Lett. 106, (2011).

Brandao, F. G. S. L., Harrow, A. W. & Horodecki, M. Local random quantum circuits are approximate polynomial-designs. 36 (2012). at <http://arxiv.org/abs/1208.0692>

Brandao, F. G. S. L., Harrow, A. W. & Horodecki, M. Local random quantum circuits are approximate polynomial-designs. 36 (2012). at <http://arxiv.org/abs/1208.0692>

Brandão, F. G. S. L., Horodecki, M., Oppenheim, J., Renes, J. M. & Spekkens, R. W. The Resource Theory of Quantum States Out of Thermal Equilibrium. 12 (2011). at <http://arxiv.org/abs/1111.3882>

Brunner, N., Linden, N., Popescu, S. & Skrzypczyk, P. Virtual qubits, virtual temperatures, and the foundations of thermodynamics. 15 (2011). at <http://xxx.lanl.gov/abs/1106.2138>

Campisi, M., Hänggi, P. & Talkner, P. Colloquium: Quantum fluctuation relations: Foundations and applications. Rev. Mod. Phys. 83, 771–791 (2011).

Campisi, M., Talkner, P. & Hänggi, P. Influence of measurements on the statistics of work performed on a quantum system. Phys. Rev. E 83, (2011).

Cramer, M. & Eisert, J. A quantum central limit theorem for non-equilibrium systems: Exact local relaxation of correlated states. 27 (2009). at <http://arxiv.org/abs/0911.2475/>

Cramer, M., Dawson, C., Eisert, J. & Osborne, T. Exact Relaxation in a Class of Nonequilibrium Quantum Lattice Systems. Phys. Rev. Lett. 100, (2008).

Dahlsten, O. C. O., Renner, R., Rieper, E. & Vedral, V. Inadequacy of von Neumann entropy for characterizing extractable work. New J. Phys. 13, 53015 (2011).

Dahlsten, O. C. O., Renner, R., Rieper, E. & Vedral, V. The work value of information. 5 (2009). at <http://arxiv.org/abs/0908.0424>

Dahlsten, O., Renner, R., Rieper, E. & Vedral, V. Inadequacy of von {N}eumann entropy for characterising extractable work. New J. Phys. 13, 53015 (2011).

Dahlsten, O., Renner, R., Rieper, E. & Vedral, V. Inadequacy of von Neumann entropy for characterising extractable work. New J. Phys. 13, 53015 (2011).

Datta, N. & Renner, R. Smooth {R}ényi entropies and the quantum information spectrum. IEEE Trans. Inf. theory 55, 2807–2815 (2009).

Deffner, S. & Lutz, E. Generalized Clausius Inequality for Nonequilibrium Quantum Processes. Phys. Rev. Lett. 105, (2010).

Deffner, S. & Lutz, E. Nonequilibrium Entropy Production for Open Quantum Systems. Phys. Rev. Lett. 107, (2011).

Deffner, S. & Lutz, E. Thermodynamic length for far-from-equilibrium quantum systems. Phys. Rev. E 87, 022143 (2013).

del Rio, L. et al. The thermodynamic meaning of negative entropy. Nature 474, 61–3 (2011).

del Rio, L., Hutter, A., Renner, R. & Wehner, S. Relative Thermalization. 19 (2014). at <http://arxiv.org/abs/1401.7997>

Dillenschneider, R. & Lutz, E. Memory Erasure in Small Systems. Phys. Rev. Lett. 102, (2009).

Dupuis, F., Berta, M., Wullschleger, J. & Renner, R. The decoupling theorem. (2010). at <http://arxiv.org/abs/1012.6044>

Egloff, D., Dahlsten, O. C. O., Renner, R. & Vedral, V. Laws of thermodynamics beyond the von Neumann regime. 13 (2012). at <http://arxiv.org/abs/1207.0434>

Esposito, M., Harbola, U. & Mukamel, S. Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009).

Esposito, M., Kumar, N., Lindenberg, K. & Van den Broeck, C. Stochastically driven single-level quantum dot: A nanoscale finite-time thermodynamic machine and its various operational modes. Phys. Rev. E 85, (2012).

Ferraro, A., García-Saez, A. & Acín, A. Intensive temperature and quantum correlations for refined quantum measurements. EPL (Europhysics Lett. 98, 10009 (2012).

Furrer, F., Åberg, J. & Renner, R. Min- and Max-Entropy in Infinite Dimensions. (2011). at <http://arxiv.org/abs/1004.1386>

Gallego, R., Riera, A. & Eisert, J. Correlated thermal machines in the micro-world. 19 (2013). at <http://arxiv.org/abs/1310.8349>

García-Saez, A., Ferraro, A. & Acín, A. Local temperature in quantum thermal states. Phys. Rev. A 79, (2009).

Gemmer, J., Michel, M. & Mahler, G. Quantum Thermodynamics: Emergence of Thermodynamic Behavior Within Composite Quantum Systems (Lecture Notes in Physics). 360 (Springer, 2009). at <http://www.amazon.com/Quantum-Thermodynamics-Emergence-Thermodynamic-Composite/dp/3540705090>

Giazotto, F., Heikkilä, T., Luukanen, A., Savin, A. & Pekola, J. Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications. Rev. Mod. Phys. 78, 217–274 (2006).

Gogolin, C. Environment-induced super selection without pointer states. Phys. Rev. E 81, (2010).

Gogolin, C. Equilibration and thermalization in quantum systems. (2014). at <http://www.cgogolin.de/downloads/Dissertation_Christian_Gogolin_Published.pdf>

Gogolin, C. Pure State Quantum Statistical Mechanics. 72 (2010). at <http://arxiv.org/abs/1003.5058>

Gogolin, C., Müller, M. & Eisert, J. Absence of Thermalization in Nonintegrable Systems. Phys. Rev. Lett. 106, (2011).

Gogolin, C., Müller, M. P. & Eisert, J. Absence of Thermalization in Nonintegrable Systems. Phys. Rev. Lett. 106, 040401 (2011).

Hilt, S., Shabbir, S., Anders, J. & Lutz, E. Validity of {L}andauer’s principle in the quantum regime. (2010). at <http://arxiv.org/abs/1004.1599>

Hilt, S., Shabbir, S., Anders, J. & Lutz, E. Validity of Landauer’s principle in the quantum regime. (2010). at <http://arxiv.org/abs/1004.1599>

Hofferberth, S., Lesanovsky, I., Fischer, B., Schumm, T. & Schmiedmayer, J. Non-equilibrium coherence dynamics in one-dimensional Bose gases. Nature 449, 324–7 (2007).

Horodecki, M. & Oppenheim, J. Fundamental limitations for quantum and nano thermodynamics. (2011). at <http://arxiv.org/abs/1111.3834>

Horodecki, M. & Oppenheim, J. Fundamental limitations for quantum and nano thermodynamics. (2011). at <http://arxiv.org/abs/1111.3834>

Horodecki, M. et al. Local versus non-local information in quantum-information theory: Formalism and phenomena. Phys. Rev. A 71, 62307 (2005).

Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996).

Horodecki, M., Oppenheim, J. & Winter, A. Partial quantum information. Nature 436, 673–676 (2005).

Huber, G., Schmidt-Kaler, F., Deffner, S. & Lutz, E. Employing Trapped Cold Ions to Verify the Quantum Jarzynski Equality. Phys. Rev. Lett. 101, 070403 (2008).

Hutter, A. & Wehner, S. Dependence of a quantum-mechanical system on its own initial state and the initial state of the environment it interacts with. Phys. Rev. A 87, 012121 (2013).

Hutter, A. & Wehner, S. When does a quantum mechanical system depend on the initial conditions of the system or the environment? 31 (2011). at <http://arxiv.org/abs/1111.3080>

Jennings, D. & Rudolph, T. Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81, 61130 (2010).

Jennings, D. & Rudolph, T. Entanglement and the thermodynamic arrow of time. Phys. Rev. E 81, (2010).

Jevtic, S., Jennings, D. & Rudolph, T. Maximally and Minimally Correlated States Attainable within a Closed Evolving System. Phys. Rev. Lett. 108, (2012).

Jevtic, S., Jennings, D. & Rudolph, T. Maximally and Minimally Correlated States Attainable within a Closed Evolving System. Phys. Rev. Lett. 108, (2012).

Jevtic, S., Jennings, D. & Rudolph, T. Quantum mutual information along unitary orbits. Phys. Rev. A 85, 052121 (2012).

Kajari, E., Wolf, A., Lutz, E. & Morigi, G. Statistical mechanics of entanglement mediated by a thermal reservoir. Phys. Rev. A 85, 042318 (2012).

Kajari, E., Wolf, A., Lutz, E. & Morigi, G. Statistical mechanics of entanglement mediated by a thermal reservoir. Phys. Rev. A 85, 042318 (2012).

Kim, S., Sagawa, T., De Liberato, S. & Ueda, M. Quantum Szilard Engine. Phys. Rev. Lett. 106, (2011).

König, R., Renner, R. & Schaffner, C. The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55, 4337–4347 (2009).

Krüger, P., Hofferberth, S., Mazets, I., Lesanovsky, I. & Schmiedmayer, J. Weakly Interacting Bose Gas in the One-Dimensional Limit. Phys. Rev. Lett. 105, (2010).

Levy, A., Alicki, R. & Kosloff, R. Quantum Refrigerator and the III-law of Thermodynamics. (2012). at <http://arxiv.org/abs/1205.1347>

Linden, N., Popescu, S. & Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 105, 130401 (2010).

Linden, N., Popescu, S. & Skrzypczyk, P. The smallest possible heat engines. 5 (2010). at <http://arxiv.org/abs/1010.6029>

López, R., Lim, J. & Sánchez, D. Fluctuation Relations for Spintronics. Phys. Rev. Lett. 108, (2012).

Mari, A. & Eisert, J. Cooling by Heating: Very Hot Thermal Light Can Significantly Cool Quantum Systems. Phys. Rev. Lett. 108, (2012).

Masanes, L., Roncaglia, A. J. & Acín, A. Complexity of energy eigenstates as a mechanism for equilibration. Phys. Rev. E 87, 032137 (2013).

Masanes, L., Roncaglia, A. J. & Acin, A. The complexity of energy eigenstates as a mechanism for equilibration. 4 (2011). at <http://arxiv.org/abs/1108.0374>

Mazets, I. E. & Schmiedmayer, J. Thermalization in a quasi-one-dimensional ultracold bosonic gas. New J. Phys. 12, 055023 (2010).

Muhonen, J. T., Meschke, M. & Pekola, J. P. Micrometre-scale refrigerators. Rep. Prog. Phys. 75, 046501 (2012).

Müller, M. P., Dahlsten, O. C. O. & Vedral, V. Unifying typical entanglement and coin tossing: on randomization in probabilistic theories. 35 (2011). at <http://arxiv.org/abs/1107.6029>

Müller, M. P., Gross, D. & Eisert, J. Concentration of Measure for Quantum States with a Fixed Expectation Value. Commun. Math. Phys. 303, 785–824 (2011).

Oppenheim, J., Horodecki, M., Horodecki, P. & Horodecki, R. Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002).

Parrondo, J. M. R. The {S}zilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions. Chaos 11, 725–736 (2001).

Parrondo, J. M. R. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions. Chaos 11, 725–736 (2001).

Plesch, M., Dahlsten, O., Goold, J. & Vedral, V. Measurement and Particle Statistics in the Szilard Engine. 4 (2012). at <http://arxiv.org/abs/1203.0469>

Ponomarev, A. V., Denisov, S., Hänggi, P. & Gemmer, J. Quantum thermal equilibration from equipartition. EPL (Europhysics Lett. 98, 40011 (2012).

Popescu, S., Short, A. J. & Winter, A. Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754–758 (2006).

Renes, J. M. & Renner, R. One-shot classical data compression with quantum side information and the distillation of common randomness or secret keys. (2010). at <http://arxiv.org/abs/1008.0452>

Renner, R. Security of quantum key distribution. (2005). at <http://arxiv.org/abs/quant-ph/0512258>

Renner, R. Symmetry of large physical systems implies independence of subsystems. Nat. Phys. 3, 645–649 (2007).

Riera, A., Gogolin, C. & Eisert, J. Thermalization in Nature and on a Quantum Computer. Phys. Rev. Lett. 108, (2012).

Roldán, É. & Parrondo, J. Estimating Dissipation from Single Stationary Trajectories. Phys. Rev. Lett. 105, (2010).

Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K. & Lutz, E. Nanoscale Heat Engine Beyond the Carnot Limit. Phys. Rev. Lett. 112, 030602 (2014).

Steinigeweg, R., Khodja, A., Niemeyer, H., Gogolin, C. & Gemmer, J. Pushing the Limits of the Eigenstate Thermalization Hypothesis towards Mesoscopic Quantum Systems. Phys. Rev. Lett. 112, 130403 (2014).

Strasberg, P., Schaller, G., Brandes, T. & Esposito, M. Thermodynamics of a Physical Model Implementing a Maxwell Demon. Phys. Rev. Lett. 110, 040601 (2013).

Szehr, O., Dupuis, F., Tomamichel, M. & Renner, R. Decoupling with unitary almost two-designs. (2011). at <http://arxiv.org/abs/1109.4348>

Timofeev, A. V., Helle, M., Meschke, M., Möttönen, M. & Pekola, J. P. Electronic Refrigeration at the Quantum Limit. Phys. Rev. Lett. 102, (2009).

Tomamichel, M., Colbeck, R. & Renner, R. A fully quantum asymptotic equipartition property. IEEE Trans. Inf. theory 55, 5840–5847 (2009).

Tomamichel, M., Colbeck, R. & Renner, R. Duality between smooth min- and max-entropies. IEEE Trans. Inf. theory 56, 4674–4681 (2010).

Wieśniak, M., Vedral, V. & Brukner, Č. Heat capacity as an indicator of entanglement. Phys. Rev. B 78, (2008).

Wieśniak, M., Vedral, V. & Brukner, Č. Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258–258 (2005).