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Motivation

Dependence on magnetic Reynolds number of damping-time-to-period ratio of
sausage modes in a solar photospheric pore studied numerically by [2] in the resistive
(η 6= 0) MHD framework:

• Region of Rm > 107: damping almost independent of η ⇒ mainly due to
resonant absorption in cusp continuum

• Region of Rm < 3 · 104: damping linearly dependent on η ⇒ mainly due to
resistive effects

• Green region of 3 · 104 < Rm < 107: intermediate regime where both electrical
resistivity and resonant absorption are important for damping

Goal: to explain/confirm this behavior through an analytical model

Model

Straight cylinder aligned with equilibrium magnetic field, circular basis and discontinuous bound-
ary (l = 0), as a model for the photospheric pore (figure modified from [1]). Inside (index ”i”)
and outside (index ”e”) of cylinder are two distinct uniform plasmas.

Analytical derivations

• Every perturbed quantity is expressible in terms of ∇ · ξ = R(r) exp {i (kzz − ωt)}. The
following solution is found for R:

R(r) =

{
C1 J0(κ−,ir) + C3 J0(κ+,ir) if r < a

C2 H0(κ−,er) + C4 H0(κ+,er) if r > a
,

where J0 is Bessel function of first kind and order 0, and H0 means either H
(1)
0 or H

(2)
0

(Hankel functions of order 0), depending on the sign of the imaginary part of its argument.

• κ− represents the wave part of the solution, which is complex because of damping from
resistivity. It can be thought of as the radial wavenumber

κ+ represents Hartmann layer (electromagnetic boundary layer with strong gradients
which gets thinner as resistivity η becomes smaller)

• With proper boundary conditions, complex dispersion relation for ω can be derived

• Long wavelength limit formula of dispersion relation also available

Results

• Solving dispersion relation numerically allows to compare damping-time-to period ratio
(τ/P ) as a function of magnetic Reynolds number (Rm) from analytical model (”ana.
mod.”) of this research with numerical calculations (”num. cal.”) from [2] code adapted to
infinitely small transition layer (l ≈ 0):
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• In the long wavelength limit (kza → 0), analytical results produce simpler
formula for damping rate. Since ω close to internal cusp frequency (ωCi) in this
limit, writing

ω2 = ω2
Ci(1 + δ)

we find:

δ ∝ √η

• Following figure is graph of damping time-to-period ratio in function of kzakzakza
for long wavelength limit (in logarithmic scale):
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In the long wavelength limit, the resistive damping thus vanishes.
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