Estimating relative sea-level change from glacial isostatic adjustment (GIA): progress and challenges

Pippa Whitehouse, Durham University

Relative sea-level change ... water depth change

• water depth change : consider changes to the height of bed **and** the sea surface

Glacial Isostatic Adjustment (GIA)

Whitehouse (2018)

Key uncertainties, part one

Coastal land deformation due to GIA is modelled or interpolated from data

- model predictions have uncertainties due to ice history and earth rheology
- geological/geodetic data are in different locations and relate to different epochs
- the rate of land deformation due to past ice sheet change will decay over time

Glacial Isostatic Adjustment (GIA)

Present-day GIA across the British Isles

- Bed deformation : primarily due to **past** ice sheet change
- Sea surface height change : primarily due to **contemporary** ice sheet change

Instantaneous processes

- Loss of ice mass
- Land uplift
- Perturbation to shape of geoid

Delayed processes

- Rebound beneath former ice sheet
- Peripheral bulge subsidence
- Perturbation to height of sea surface

Global processes : sea-level fingerprints

- Projected sea-level change by 2100 under SSP5-8.5
- blue = decrease in water depth in the nearfield of melting ice
- orange = increase in water depth (greater than the global mean) far from melting ice

Take home message: northern hemisphere ice loss is predicted to have a negligible impact on sealevel change around the British Isles, Antarctic ice loss will have a significant impact

Glacial Isostatic Adjustment (GIA)

Present-day GIA across the British Isles

- Bed deformation : primarily due to **past** ice sheet change
- Sea surface height change : primarily due to **contemporary** ice sheet change

Instantaneous processes

- Loss of ice mass
- Land uplift
- Perturbation to shape of geoid

Delayed processes

- Rebound beneath former ice sheet
- Peripheral bulge subsidence
- Perturbation to height of sea surface

- The West Antarctic Ice Sheet (WAIS) is marine-grounded
- Following ice sheet retreat there
 will be delayed uplift and
 subsidence in ocean regions
- Net effect will be a delayed increase in global mean sea surface height
- The rebound will be relatively **rapid** due to the weak Earth rheology beneath WAIS

Key uncertainties, part two

Coastal land deformation due to GIA is modelled or interpolated from data

- model predictions have uncertainties due to ice history and earth rheology
- geological/geodetic data are in different locations and relate to different epochs
- the rate of land deformation due to past ice sheet change will decay over time
- Sea surface change depends on future cryospheric change
 - the 'fingerprint' of sea-level change due to cryospheric change can be predicted
 - > greatest impact on the British Isles will be due to far-field, i.e. Antarctic, ice loss
 - the rate/distribution of global cryospheric change is the primary uncertainty
 - issues to consider:
 - rebound in formerly marine-grounded regions
 - the role of 3D earth structure

Cryospheric contributions to future sea level

 Emissions scenarios make little difference to sea-level change in the coming decades, but have a huge effect on sea level at 2100

Thoughts on how to address current uncertainties

- Better understanding of time-evolving land deformation around the coast of the British Isles via modelling and (co-located) observations
 - non-GIA-related land deformation also very important, e.g. sediment processes
- Better predictions of far-field cryospheric change
 - in particular, improved understanding of likely rates of change due to processes not currently operating, e.g. extensive surface melt across Antarctica, ice shelf collapse
- Research into second-order effects
 - Impact of spatial variations in Earth rheology
 - The ability of GIA to delay grounding line retreat across West Antarctica