# Astro-Particle Physics of the Sun







Kenny, Chun Yu Ng (吳震宇) Weizmann Institute of Science



Soon: GRAPPA, U of Amsterdam



# The Sun-Earth Relationship

- Short term (11-yr activity)
  - E.g., 1989 geomagnetic storm
  - Power outage/ satellite drag/ communication/ magnetic guidance/ flight radiation



NASA

- Long term
  - Sun related climate effect

Bahcall +
Astronomy and Astrophysics Reports
National Academy Press, Washington DC 1991

#### Discovery of Helium



- 1868
- Helios -> Helium





Photos by Wikipedia Commons
Pierre Janssen, Joseph Norman Lockyer



#### Solar Neutrinos



http://apod.nasa.gov/apod/ap980605.html





#### Observations of the Sun

GeV ??? → The Sun is not hot enough!



# Comsic rays



# Sun – Cosmic-Ray Beam Dump



Kenny C.Y. NG, Exeter CCSN 2019

# Solar Atmospheric Gamma Rays

$$p + p \to \pi^0/\pi^{\pm} + X$$

$$\pi^0 \to \gamma + \gamma$$

$$\pi^{\pm} 
ightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu}$$

 $\mu^{\pm} \to e^{\pm} + \bar{\nu}_{\mu}/\nu_{\mu} + \nu_{e}/\bar{\nu}_{e}$ 

Seckel, Stanev, Gaisser (1991) Zhou, *KCYN*, Beacom, Peter PRD 2017

CR protons
Hadronic





# Dark Matter/Gravity problem

Big Bang Nucleosynthesis\CMB



Clusters

Galaxies/Local



# Weakly interacting massive particles

Direct Detection



Collider Search



Indirect Detection







#### Sun – Dark Matter detector



Press, Spergel (1985) Krauss, Freese, Press, Spergel (1985) Silk, Olive, Srednicki (1985)





#### Solar WIMP Search

- Best limit on SD cross sections
  - Hard Channels

Both scattering and Annihilation!

How far can neutrino telescopes reach?

8/7/19



# HE Gamma-ray Source HE Neutrino Source Dark Matter Detector





# Solar atmospheric gamma rays

Zhou, KCYN, Beacom, Peter PRD 2017



# Solar atmospheric gamma rays

Zhou, KCYN, Beacom, Peter PRD 2017



#### Seckel Stanev Gaisser 1991



Figure 1: Model of magnetic fields near the photosphere. Shading increases with magnetic field intensity.

- Follow the field line
- Gas-B-field pressure equilibrium
- Magnetic field gradient -> mirroring
- Trajectory -> interaction probability -> ~ 1%

Boost gamma-ray production

# The overall picture



# Fermi Gamma-ray Space Telescope



- LAT
  - Large area telescope



www-glast.stanford.edu

# Finding the Sun with Fermi



X [ degree ]

# Fermi Detection (18 months)

- First detection was EGRET (Orlando, Strong 2008)
- Model prediction too small
- Satisfy cosmic-ray bound ←→ CR model with large B-field enhancement



#### Observation: 9-year averaged spectrum

2008 – 2017 (9 years)

KCYN, Beacom, Peter, Rott PRD 2016 Tang, KCYN, Linden, Zhou, Beacom, Peter PRD 2018



#### Observation: 9-year averaged spectrum

2008 – 2017 (9 years)

KCYN, Beacom, Peter, Rott PRD 2016 Tang, KCYN, Linden, Zhou, Beacom, Peter PRD 2018



#### Time variation

KCYN, Beacom, Peter, Rott PRD 2016 Tang, KCYN, Linden, Zhou, Beacom, Peter PRD 2018

- Clear anticorrelation with solar activity from 1-10 GeV
- Less clear in 10-100 GeV (less variation or insufficient statistics)





Small modulation amplitude

-> extra modulation needed near the Sun

C. Consolandi CRD8c

r CCSN 2019

# CR Solar Modulation / solar activity

- 1. CR propagation in the solar system
- 2. CR propagation in the solar atmosphere



Adriani+ 2013

#### Observation: 9-year averaged spectrum

- Aug 2008 Jan 2010 (solar min. 76 weeks)
- 2008 2017 (9 years)



# High energy photon/Time variation, Surprise (1)!

>100 GeV events

- Linden, Zhou, Beacom, Peter, KCYN, Tang PRL 2018
- 6 events from AUG 2008 to Jan 2010 (quiet Sun)
- O events for the next 7.8 years (active Sun)





The high-energy photon production are very sensitive to the solar condition

#### Sun shadow observations

 TeV cosmic-ray Sun shadows (near Suntrajectory)





ICRR, Tibet AS-gamma PRL 2013

8/7/19

### Spectrum, surprise (2)

- Hard spectrum till ~100 GeV
  - Magnetic enhancement works for protons ~ TeV
  - Enhancement increasingly efficient! Close to upper bound at HE



FLUX(E) 
$$\propto \sigma_{pp} \times \Phi_p(E) \times \epsilon(E)$$
  
 $\sim E^{-2.2} \sim E^{-0} \sim E^{-2.7} \sim E^{+0.5}$ 

# Spectrum, surprise (3)

- Strange "dip" between 30-50 GeV
  - Naively, two components, but not easy
  - No obvious instrumental explanation
  - Seems shallower outside solar minimum
  - Statistical fluke? Time-dependent feature/systematics? Will know soon



# Spectrum, surprise (4)

Observations of the Sun in GeV Gamma Rays by CALET on the ISS

Nicholas Cannady, APS April Meeting 2019
 3 years
 Consistent with hard spectrum
 3 photons above 10GeV, 1 at 30-50GeV ?!



#### Morphology, surprise (4)

Low Energy Bin

- 10-50GeV



Linden, Zhou, Beacom, Peter, KCYN, Tang PRL 2018



#### Morphology, surprise (4)

High Energy Bin

Linden, Zhou, Beacom, Peter, KCYN, Tang PRL 2018



#### Morphology, surprise(4)

- Two spatial components
- Polar
  - Relatively stable vs time

- Equatorial
  - Extreme time variation

Linden, Zhou, Beacom, Peter, KCYN, Tang PRL 2018



# Solar Gamma Spectrum





# HAWC The HAWC Observatory

Los Alamos

- 300 Water Cherenkov Detectors
- 22,000 m² detector area
- Sub TeV >100 TeV Sensitivity
- Wide field of view: -2 sr
- High duty cycle: >95%



Excellent detector for extended sources

# Gamma Hadron Separation





Large FOV, all weather instrument

## HAWC analysis

- Nov 2014 December 2017 (829 days)
  - The sun was still active
- Significance map



#### HAWC analysis of the Sun (2014-2017)

- Constrain ~10% of CR upper bound (active phase)
- Exciting prospect for current solar min (2018 -)





#### 2018 Data: Onwards to the Solar Minimum



#### 2018 Data: Onwards to the Solar Minimum



2015

#### Mehr Un Nisa CRI13c

Probing the Anomalous Flux of Very-high-energy Gamma rays from the Sun with HAWC

2017



2016

#### The Sun as a TeV source?!



### First Solar gamma simulation w/ B-field



#### 3. Solar disk simulation result





PFSS model for "quiet" Sun

#### Zhe Li (IHEP)

SH5e: Estimation of Solar Disk Gamma-ray **Emission Based on Geant4** 

17

# Solar Atmospheric Gamma rays

Complicated.....

But could be a new probe for solar physics!

## Solar Atmospheric Neutrinos



Dilute atmosphere, larger neutrino flux

Seckel+ 1991, Moskalenko+, 1993, Ingelman+ 1996, Hettlage+ 2000, Fogli+ 2003

C.A. Argüelles+ 1703.07798

Joakim Edsjo+ 1704.02892

# Flux without B/field

Absorption

- Oscillation
  - Factor of 2 effect



Joakim Edsjo+ 1704.02892

# Solar Atmospheric Neutrinos

KCYN, Beacom, Peter, Rott 2017



$$\theta_{\nu\mu} \simeq 1^{\circ} \sqrt{1 \, \text{TeV}/E_{\nu}}$$

Dilute atmosphere, larger neutrino flux

Seckel+ 1991, Moskalenko+, 1993, Ingelman+ 1996, Hettlage+ 2000, Fogli+ 2003

C.A. Argüelles+ 1703.07798 Joakim Edsjo+ 1704.02892

### Gigaton Neutrino Detectors

IceCube 2013-Southpole



KM3NeT (building) Mediterranean



# Neutrino point source detection

$$\nu_{\mu} + N \rightarrow \mu + X$$

- $\nu_{\mu}$  CC events
  - Starting events

$$\frac{dN^{\rm sta}}{dE_{\mu}} \simeq N_A \rho V T \frac{1}{1-y} \left[ \frac{d\Phi}{dE_{\nu}}(E_{\nu}) \sigma(E_{\nu}) \right]_{E_{\nu} = \frac{E_{\mu}}{(1-y)}}$$

#### Entering events

$$\frac{dN^{\text{ent}}}{dE_{\mu}} \simeq \frac{N_A \rho AT}{\rho \left(\alpha + \beta E_{\mu}\right)} \int_{\frac{E_{\mu}}{1-y}}^{\infty} dE_{\nu} \frac{d\Phi}{dE_{\nu}}(E_{\nu}) \sigma(E_{\nu})$$

Muon range



# Energy information - Muon energy loss





Astraatmadja 2011

Energy resolution from muon radiative energy loss?

# Background or Signal? (Both!)







BAD energy-resolution
Difficult to distinguish from DM signal
Background!

Some energy-resolution
No DM signal\*

Astrophysical signal!

#### Solar ATM neutrino – indirect detection Neutrino Floor





No B-field effect are considered

IceCube Search ongoing [S. In & C. Rott ICRC17 (965)]

KCYN, Beacom, Peter, Rott, PRD 2017 See also Arguelles+ 1703.07798 Edsjo+ 1704.02892

### IceCube Search





#### C. Rott, KIAS workshop 2018



Seems difficult...... Improve analysis?

### Summary

- Solar gamma rays
  - Complicated
  - TeV (HAWC-operating, LHAASO-soon)
  - CALET/AMS2
  - More time (solar minimum starting 2018)



- Solar atmospheric neutrinos
  - IceCube, KM3NeT (future)

Anomalous Signals from the Sun -> New Physics!

Thanks!