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Atlantic Meridional Overturning Circulation (AMOC)

[Rahmstorf, 2002]
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Atlantic Meridional Overturning Circulation (AMOC)

I Competing thermohaline circulation effects
→ multiple stable states,‘on’ and ‘off’

I Observed in heirarchy of models
I simple box models [Stommel, 1961]
I intermediate complexity climate models [Lenton et al., 2007]
I full general circulation models [Dijkstra, 2007]

I Evidence of ‘off’ state
I Dansgaard-Oeschgar events (significant changes in AMOC

transport)

I Driving force - freshwater input at high latitudes
I Greenland ice sheet, Labrador/Nordic Seas
I known as ‘hosing’
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PEN/ReCoVER meeting -
“Pacing and synchronization of palaeoclimate variability” (June 2017)
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Global oceanic box model
FAMOUS

I coarse-resolution coupled Atmosphere-Ocean General Circulation Model
(AOGCM)

I atmosphere: horizontal 5◦ × 7.5◦, vertical 11 levels
I ocean: horizontal 2.5◦ × 3.75◦, vertical 20 levels
I no artificial flux adjustments (distorts AMOC hysteresis [Dijkstra and

Neelin, 1999])

Wood et al., 2019
I Analysed FAMOUS AOGCM
→ reduced to low order dynamical processes, box model

I calibrated the box model to a data-assimilating ocean reanalysis
I directly calculated the AMOC hysteresis curve in the FAMOUS AOGCM,

for present climate state and with increased atmospheric CO2
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Wood et al. (2019) Box Model

Five-box model: Each box corresponds to a large-scale water mass structure
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I q - overturning strength
(controlled by boxes S and N)

I Fi - surface freshwater fluxes
I Ki - wind-driven transport
I γ - proportion of cold water path
I η - S-B box mixing parameter
I λ - pipe constant

Cold water path: AMOC flow via South Pacific & Drake passage
Warm water path: AMOC flow via Indo-Pacific thermocline
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Model equations

q = λ[α(TS − T0) + β(SN − SS)]
1 + λαµ

q ≥ 0:

VN ṠN = q(ST − SN) + KN(ST − SN)− FNS0,

VT ṠT = q[γSS + (1− γ)SIP − ST ] + KS(SS − ST ) + KN(SN − ST )− FT S0,

VS ṠS = γq(SB − SS) + KIP(SIP − SS) + KS(ST − SS) + η(SB − SS)− FSS0,

VIP ˙SIP = (1− γ)q(SB − SIP) + KIP(SS − SIP)− FIPS0

VB ṠB = q(SN − SB) + η(SS − SB)

q < 0:

VN ṠN = |q|(SB − SN) + KN(ST − SN)− FNS0

VT ṠT = |q|(SN − ST ) + KS(SS − ST ) + KN(SN − ST )− FT S0

VS ṠS = γ|q|(ST − SS) + KIP(SIP − SS) + KS(ST − SS) + η(SB − SS)− FSS0

VIP ˙SIP = (1− γ)|q|(ST − SIP) + KIP(SS − SIP)− FIPS0

VB ṠB = γ|q|SS + (1− γ)|q|SIP − |q|SB + η(SS − SB)
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Model equations
Total salt content

C = VNSN + VT ST + VSSS + VIPSIP + VBSB

implies
dC/dt = −(FN + FT + FS + FIP)S0

For constant C , total surface fresh water fluxes satisfy

FN + FT + FS + FIP = 0

Reduce by one dimension → write one box as function of other four

Bifurcation parameter will be hosing H,

FN 0.384 + 0.1311H FS 1.078− 0.2626H
FT −0.723 + 0.6961H FIP −0.738− 0.5646H
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Three-box model
q ≥ 0:

VN ṠN = q(ST − SN) + KN(ST − SN)− FNS0

VT ṠT = q[γSS + (1− γ)SIP − ST ] + KS(SS − ST ) + KN(SN − ST )− FT S0

q < 0:

VN ṠN = |q|(SB − SN) + KN(ST − SN)− FNS0

VT ṠT = |q|(SN − ST ) + KS(SS − ST ) + KN(SN − ST )− FT S0

SS and SB taken to be constant, SIP eliminated through conservation of salt

For numerics we use scaling

τ = tY −1, Y = 3.15× 107

S̃i = 100(Si − S0), i ∈ [N,T , S, IP,B].
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Bifurcation analysis of Box Model
COCO continuation software is used to study effects of varying H
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Lower saddle node Hlsn −0.07996 −0.05446 −0.05445
Upper homoclinic Hhom 0.2165 0.2128 NA

Upper Hopf HHopf 0.2191 0.2134 0.2133
Upper saddle node Husn 0.2214 0.2139 0.2138
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Bifurcation analysis of Box Model
Schematic diagram of area near upper saddle node

HHopf<H<Husn

H

SN

Hlsn

Husn

H<Hlsn
Hlsn<H<Hhom

Hhom<H<HHopf

Husn<H

SN

ST

HHopf

Hhom



Title to go here

Body copy to go here

Bifurcation analysis of Box Model
Two parameter bifurcation diagram with γ (proportion of cold water path)
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Note that γ = 0.39 was used for one-parameter analysis
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Effect of doubled preindustrial CO2
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I increased value of H at upper saddle node (Husn = 0.4225)
I increased region of instability before upper saddle node (HHopf = 0.3888)
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Effect of doubled preindustrial CO2

Basins of attraction - show video
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Effect of doubled preindustrial CO2
H = 0 H = 0.32678

H = 0.34696 H = 0.35503
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Time-dependent hosing

We consider a piecewise linear hosing function

Hpwl (t) =



H0 t < 0,
α(t) t ∈ [0,Trise],
Hpert t − Trise ∈ [0,Tpert],
β(t) t − Trise − Tpert ∈ [0,Tfall],
H0 t ≥ Trise + Tpert + Tfall,

rrise = |H0 − Hpert|
Trise

, rfall = |H0 − Hpert|
Tfall

,

α(t) = rriset, β(t) = rfall(t − Trise − Tpert),
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Instantaneous forcing changes
Trise = Tfall = 0, varying Tpert
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Instantaneous forcing changes
Critical time of perturbation as a function of Hpert, (Trise = Tfall = 0)

Red line - threshold where there is a source-saddle connection
Black dashed - constant perturbation volume (Hpert × Tpert = 175)
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Gradual forcing changes - B-tipping

Consider case H0 = 0, Hpert = 0.5 (after saddle node)

Tips:
Trise = 200, Tpert = 200, Tfall = 200

Does not tip:
Trise = 200, Tpert = 200, Tfall = 100

show B-tip videos
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Gradual forcing changes - B-tipping
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Gradual forcing changes - R-tipping

Consider case H0 = 0, Hpert = 0.37 ((before homoclinic
connection)

Tips:
Trise = 100, Tpert = 400, Tfall = 320

Does not tip:
Trise = 100, Tpert = 400, Tfall = 310

show R-tip videos



Title to go here

Body copy to go here

Gradual forcing changes - R-tipping
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Gradual forcing changes - Tipping thresholds

Tpert = 100 Tpert = 150 Tpert = 200

Tpert = 400 Tpert = 600 Tpert = 800
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Connecting to AMOC tipping in GCMs
Trajectories in SN ,ST phase space for the ‘press’ experiments using the

AOGCM HadGEM3-GC2

Blue - hosed phase

Black - AMOC recovers

Red - AMOC remains weak,
further integration of the
AOGCM needed to determine
the final state
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Connecting to AMOC tipping in GCMs

Box model (1×CO2) HadGEM3-GC2
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Bars indicate range between the greatest Tpert with return to initial state and
smallest Tpert with possible tipping
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Conclusions
I Low-dimensional global oceanic box model to investigate the AMOC

derived from and calibrated to FAMOUS (AOGCM) runs
I Hysteresis between ‘on’ and ‘off’ states found in box model and

GCM
I First loss of stability is through a subcritical Hopf bifurcation
I Basin of attraction of ‘on’ state goes from infinite volume to finite

volume at homoclinic connection
I Doubled atmospheric CO2 conditions increases unstable region and

region of finite basin of attraction
I Time-dependent hosing allows for different cases of rate-induced

tipping and tipping prevention
I Evidence of similar resilience curve which separates tipping and

non-tipping behaviour found in GCM
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