Exeter’s Centre for Metamaterial Research and Innovation to provide novel research for £2m government offshore windfarm development

Exeter’s Centre for Metamaterial Research and Innovation (CMRI) will develop novel methods for creating conductive coating for turbine blades that adsorb radar in partnership with TWI Ltd as part of the £2M offshore windfarm development boost spearheaded by the Ministry of Defence (MOD)’s Defence and Security Accelerator (DASA) on behalf of the Department for Business, Energy and Industrial Strategy (BEIS), the Royal Air Force (RAF), and the Defence Science and Technology Laboratory (Dstl). 

In a move that could significantly boost the UK’s renewable energy growth, contracts have been awarded not only to the TWI Ltd / Exeter CMRI partnership, but also to Thales, QinetiQ, Saab, and Plextek DTS to fast-track their ideas for technologies that could mitigate the impact of windfarms on the UK’s air defence radar system.

Find out more: https://www.gov.uk/government/news/offshore-windfarm-development-boosted-by-2-million-research

 

Month 6 Presentation Prize Winners Announcement

This year, we have a joint win for our Month 6 Presentation Prize: congratulations to first year PGRs Joe Pitfield (also the winner of the Month 13 Presentation Prize)and Leanne Stanfield. They will be collecting their mystery prize soon…

The Month 6 presentations are given each May by first year PGRs, at the end of the six month mini project the students undertake before beginning their PhD project work. Feedback scores are given by their peers and by academic chairs (this year Dr Anna Katharina Ott and Dr Eric Hébrard took on these roles). Leanne’s presentation was titled ‘Graded negative index surface wave lens’ and Joe’s was titled ‘Structural stability of TMDC Heterostructures in the Presence of Water ’.  Please find their projects aims and methodology below.

Graded negative index surface wave lens

Leanne Stanfield

Aim:

Model, fabricate and characterise a graded negative index surface wave lens. One study has
already produced a free-space negative index gradient lens [1]. The aim here is to do this with surface
waves.

Methodology:

1. Develop Comsol modelling of microwave metasurfaces made of simple meta-atoms to give easy control of the surface wave index. Then vary the size of the individual elements to design a simple surface wave GRIN lens. This is a very demanding task using Comsol as the GRIN lens will need
modelling in its entirety. Once this task is complete the lens will be fabricated using wax-ink printing
and etching before being fully characterised using the XY microwave scanner.
2. Repeat the above with a more elaborate meta-atom, following on from the work of Tremain
et al [2], to give almost almost isotropic negative dispersion. Once again then vary the size of the
individual elements so that they allow for spatial control of the effective surface mode index. Then
combine such elements in a 2D metasurface structure to form a negative index GRIN lens. As for the
conventional lens this is a very demanding task using Comsol as again the GRIN lens will need
modelling in its entirety. The complete lens will then be fabricated using wax-ink printing and etching
before being fully characterised using the XY microwave scanner.

References

[1] Driscoll T, Basov DN, Starr AF, Rye PM, Nemat-Nasser S, Schurig D and Smith DR (2006) Applied
Physics Letters 88, 081101 ‘Free-space microwave focusing by negative-index gradient lens.’
[2] Tremain B’ Hooper I R, Sambles JR and Hibbins AP (2018) Scientific Reports 8, 7098 ‘Isotropic
Backward Waves Supported by a Spiral Array Metasurface.’

Structural stability of TMDC Heterostructures in the Presence of
Water

Joe Pitfield

Aim:

To explore the random structures and reorganisation of TMDC metamaterials in the presence of
water, with addition consideration of substrate effects.

Methodology:

First principles calculations combined with analytic Gibb’s Free energy arguments. In
addition, random structure prediction will be developed as a tool. This tool will require a sound
understanding of both physical and chemical environments and allow the prediction of new phases of
structures. It will need to be benchmarked against known phases.

References:

[1] F. Davies et al. TMDC Heterostructure band structure theory (submitted – preprint available)
[2] G. Schusteritsch et al. First-principles structure determination of interface materials: The NixInAs
nickelides, Phys. Rev. B, 2015.
[3] Heifets et al, BaZrO3, Phys. Rev. B, 75, 155431 (2007)

Elizabeth Martin wins Best Poster Award at 65th Annual Conference on Magnetism and Magnetic Materials (MMM 2020)

Elizabeth with the Best Poster Award Certificate

Congratulations to final year PGR Elizabeth Martin, who won the Best Poster Award at the 65th Annual Conference on Magnetism and Magnetic Materials (MMM 2020) (2nd-6th November 2020). This is an international conference that includes all aspects of fundamental and applied magnetism, which for the first time was held virtually. The conference had over 16000 attendees- including third year CDT PGRs Connor Sait, David Newman, Katie Lewis, Konstantinos Chatzimpaloglou and Oliver Latcham– with ~ 700 different talks and ~370 different posters as well as several different symposia, workshops, and tutorials.

One of our final year students, Elizabeth Martin, presented her research in one of the poster sessions and won a best poster award. Her poster was titled “Investigation of a Coupled Elasto-Magnetic Discs for Low Reynolds Number Pumps”. The presentation was in the format of a 90-second pitch with the poster, which could be viewed at any time throughout the conference on the conference platform, as well as an additional live Q&A session on Zoom.

The virtual format of the conference was a new experience for most of our researchers, they all enjoyed the conference and learnt a lot from the different presentations. However, they do feel that they missed the in-person experience and the chance to meet different researchers from all around the world. On the other hand, think that they have learnt some valuable skills with regards to presenting their work in an online format compared to in-person. The good news for in-person conferences is that according to our researchers their future is safe, they are just having a needed break for now.

Elizabeth says:

The virtual conference was obviously very different to that of the in-person conference, I enjoyed the experience and obviously I’m thrilled to be awarded a best poster award. I did miss the in-person experience and the chance to meet/catch-up with different researchers from all around the world, talking/messaging online is not the same, but this is the way things are at the moment. One of the benefits was that the presentations were in an “on-demand” format, meaning we were able to watch any presentation at any time we wanted because they were pre-recorded (another benefit was that this year none of us experienced jetlag).

The presentations from the conference are available to view on the conference online platform (for registered conference attendees only), until 30th November 2020. Other presenters from University of Exeter included Prof Feodor Ogrin, Elizabeth’s supervisor, and Dr Maciej Dabrowski, David Newman’s supervisor.

 

Elizabeth in avatar form at the conference’s social networking session

Ioannis Leontis gives oral presentation at Graphene 2020

Last month, fourth year PGR Ioannis Leontis gave an oral presentation virtually at Graphene 2020.  The event ran online from 19th-23rd October, including presentations, poster sessions and an industrial forum.

Ioannis says of the experience:

Last month, I contributed an oral presentation at the virtual conference Graphene 2020. The conference was really interesting as its programme presents very big names in the field including Nobel Laureates, such as Andre Geim, one of the fathers of graphene, and F. Duncan M. Haldane, one of the founders of the theory about topological phase transitions and the topological phases of matter. My presentation was on “Room temperature ballistic graphene p-n junctions defined by Zn metal doping”. In my talk I presented a new method for the fabrication of ultra-sharp ballistic graphene p-n junction using metal doping of graphene and a new simple characterization method of the metal induced graphene p-n junctions. My research work in this field may give a new push in the fabrication of room temperature graphene electron optic devices. In overall, my participation in such a high-level conference help me a lot in the deeper scientific understanding of my field and gave me the opportunity to make new connection as well.

Month 13 Presentation Prize Winners Announcement

This year, we have a joint win for our Month 13 Presentation Prize: congratulations to second year PGRs Joe Pitfield and Will Borrows. The prize was a £50 voucher.

The Month 13 presentations are given each October, where the PGRs give a presentation on their work to date and feedback scores are given by their peers. Joe’s presentation was titled ‘The search for new materials’ and Will’s was titled ‘Simulating heat flow in thermoacoustic devices’. Please find their abstracts below.

The search for new materials

Joe Pitfield

Abstract:

It is commonly understood that there is no universal a priori approach to predicting the nature of boundary regions between materials, nor one to enable theoretical design of novel materials within such regions. We present a developing method (RAFFLE; pseudo Random Approach For Finding (Local) Energy minima) learning from existing structural prediction methods [2][1], for the pseudo-random generation of atomic structures. Materials are characterised by decomposition of both bond angle and length, with these characterisations applied retroactively to generate new structures with profiles indicative of the isolated characteristic (in these cases, Energy of formation). This method is able to predict the existence of a series of structures of known one, two and three element systems, along with other geometries known [3] to exist for chemically similar structures (for the Transition metal dichalcogenides, both H and T phase structures predicted) and multiple stable phases identical stoichiometry structures (hexagonal and tetragonal and for Carbon) along with scopes over varying stoichiometries (HCP and FCC aluminium).


References
[1] Chris J. Pickard and R. J. Needs. ‘High-Pressure Phases of Silane’. Phys. Rev. Lett.97 (4 July 2006), p. 045504.
[2] Yanchao Wang et al. ‘Crystal structure prediction via particle-swarm optimization’. Phys. Rev. B82 (9 Sept. 2010), p. 094116.
[3] Anubhav Jain et al. ‘The Materials Project: A materials genome approach to accelerating materials innovation’. APL Materials1.1 (2013), p. 011002.

Simulating heat flow in thermoacoustic devices

Will Borrows

Abstract:

The thermoacoustic effect is a process by which sound is produced by the Joule heating of a thin film (a ‘thermophone’) with an alternating current [1]. While this effect has been known for more than a century [2], recent advances in the fabrication of nano-scale films have rejuvenated the field of thermoacoustics [3,4]. Despite this, thermophones have struggled to present themselves as an alternative to more conventional piezoacoustic speakers due to their low output efficiency.
Here we present an examination into the propagation of heat within and around a thermophone through both finite-element and finite-difference simulation of a device. We do this in order to gain a greater understanding behind the thermal processes which hinder thermophone efficiency. Of particular note is the effect of the Maxwell-Cattaneo correction to Fourier’s heat law [5], which accounts for the non-instantaneous nature of heat flow. By measuring the effect of this correction on the thermal fluctuations at the boundary between the thermophone and its surrounding medium, we are able to determine a trend for this correction. Going forward, we intend to more accurately calculate the expected sound output of a thermoacoustic device, as well as quantify the effects of this correction on the thermoacoustic efficiency.
References
[1] Ding, H. Nanoscale, 2019, v.11, p.5839-5860
[2] Preece, W. H. Proceedings of the Royal Society of London, 1880
[3] Shinoda, H. et al. Nature, 1999, v.400, p.853-855
[4] Xiao, L. et al. Nano Letters, 2008, v.8, no.12, p.4539-4545
[5] Cattaneo, C. Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, 1958, v.145, p.431-433

Month 25 Presentation Prize Winner Announcement

We are delighted to announce that third year PGR Benjamin Pearce has won the Month 25 Presentation Prize- a £50 Amazon voucher. The Month 25 presentations are given each October, where the PGRs give a presentation on their work to date and feedback scores are given by their peers. Ben’s presentation was titled ‘Mode Interference and Directional Acoustic Stop Bands in Solid-Fluid Superlattices’. Please find the abstract below.

‘Mode Interference and Directional Acoustic Stop Bands in Solid-Fluid Superlattices’

Abstract:
Whilst there is a large amount of work on one-dimensional phononic crystals (superlattices) consisting of alternating layers of solid materials, there is comparatively little investigation of the properties of the equivalent solid/fluid system. These systems are predicted to exhibit a directional transmission response not available to solid/solid systems. This response stems from an interference between the symmetric and anti-symmetric modes of a submerged plate. This effect can lead to pronounced, angularly dependent reductions in transmission, for even a single solid layer submerged in fluid [1,2]. Extending this system from a single plate to a multilayer structure offers an interesting avenue for phononic crystal design [3]. Existing work largely neglects to consider the interaction of this interference with the Bragg modes of a such a periodic structure. Here we present a numerical and theoretical consideration of the effects of this interaction and how the choice of crystal geometry offers routes for the creation of large bandwidth directional stop bands.

References:
[1] M. Seiji, “Phononic Bandgaps Pecuiar to Solid-Fluid Superlattices,” Jpn. J. Appl. Phys, 2015.
[2] Z. Sai, X. Bai-qiang and C. Wenwu, “Controlling The Angle Range in Acoustics Low-Frequency
Forbidden Transmission In Solid-Fluid Superlattice,” J. Appl. Phys, 2018.
[3] S. Zhang, Z. Y, L. Wei, G. Hu, X. Bai-qiang and C. Wenwu, “Low Frequency Forbidden Bandgap
Engineering Via A Cascade of Multiple 1D Superlattices,” J. Appl. Phys, 2018.

Harry Penketh submits his thesis!

Congratulation to PGR Harry Penketh, who recently submitted his thesis titled ‘“Control of white light emission for illumination and imaging”.

Harry discusses his project in more detail, and offers his advice for students at the start of their PhD journey:

“I have submitted my thesis, although perhaps submitted to my thesis would be a more accurate statement.

To shed some light on my delightfully vague thesis title: this project was sponsored by Dyson and therefore large sections of the research conducted remain protected by a non-disclosure agreement. Working around NDAs aside, I appreciate the broader perspective and additional development opportunities this close industry collaboration has produced.

As is no doubt the case with any job (yes, I’m going to call it a job), doing a PhD comes with its own unique rewards and challenges. In a cohort-based PhD programme one hears a good deal of the latter, but less often in my experience do we reflect on the many great perks that come with the job. I feel privileged to have been able to work with my excellent supervisors Jacopo and Bill and to have had those days (usually in a lab with a new toy) where it didn’t feel like work at all.

My honest and possibly controversial advice for (some) new students: don’t work too hard. How many problems will you solve by spending an extra 6 hours staring desperately at a screen that would have just clicked into place with a refreshed set of eyes and a cup of tea? Look after yourself and don’t forget to find enjoyment in the PhD process.

I’m currently enjoying a break from conventional work and getting stuck into some long overdue property renovation. I hope to remain in Exeter in the medium-term at least.

Harry was involved with various outreach activities during his time with the CDT, including co-organising the mini conference Exeter-Bath Knowledge Transfer in October 2019 with fellow CDT PGRs Iago Rodriguez Diez and Ben Hogan, and students from the Centre for Photonics and Photonic Materials (CPPM) at University of Bath.

Harry has co-authored the following publications:

2019

Harry has presented at the following conferences and workshops:

  • Harry Penketh, poster presentation (on the topic of emitters in wavelength scale reflectors) at Dyson CDT industry visit, Malmesbury, England, 1st November 2017
  • Harry Penketh, poster presentation (on the topic of emitters in wavelength scale reflectors) at Complex Nanophotonics Science Camp 2017, Windsor, England, 25th July 2017