Congratulations to third year CDT PGR Emanuele Gemo , co-author of a paper, Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics, which was recently published in the prestigious journal Advanced Functional Materials. His co-authors include his supervisors Dr Anna Baldycheva and Prof C David Wright.
This work was led by researchers from the labs of Prof Harish Bhaskaran at Oxford University and Prof Dr Wolfram Pernice at Muenster University. It was carried under the auspices of the EU H2020 project Fun-COMP .
Abstract
The operation of a single class of optical materials in both a volatile and nonvolatile manner is becoming increasingly important in many applications. This is particularly true in the newly emerging field of photonic neuromorphic computing, where it is desirable to have both volatile (short‐term transient) and nonvolatile (long‐term static) memory operation, for instance, to mimic the behavior of biological neurons and synapses. The search for such materials thus far have focused on phase change materials where typically two different types are required for the two different operational regimes.
In this paper, a tunable volatile/nonvolatile response is demonstrated in a photonic phase‐change memory cell based on the commonly employed nonvolatile material Ge2Sb2Te5 (GST). A time‐dependent, multiphysics simulation framework is developed to corroborate the experimental results, allowing us to spatially resolve the recrystallization dynamics within the memory cell. It is then demonstrated that this unique approach to photonic memory enables both data storage with tunable volatility and detection of coincident events between two pulse trains on an integrated chip. Finally, improved efficiency and all‐optical routing with controlled volatility are demonstrated in a ring resonator. These crucial results show that volatility is intrinsically tunable in normally nonvolatile GST which can be used in both regimes interchangeably.