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Visual imagery is a form of sensory imagination, involving subjective experiences typically described as similar to perception, but 

which occur in the absence of corresponding external stimuli. We used the Activation Likelihood Estimation algorithm (ALE) to 

identify regions consistently activated by visual imagery across 40 neuroimaging studies, the first such meta-analysis. We also 

employed a recently developed multi-modal parcellation of the human brain to attribute stereotactic co-ordinates to one of 180 

anatomical regions, the first time this approach has been combined with ALE. We identified a total 634 foci, based on 

measurements from 464 participants. Our overall comparison identified activation in the superior parietal lobule, particularly in 

the left hemisphere, consistent with the proposed ‘top-down’ role for this brain region in imagery. Inferior premotor areas and 

the inferior frontal sulcus were reliably activated, a finding consistent with the prominent semantic demands made by many 

visual imagery tasks. We observed bilateral activation in several areas associated with the integration of eye movements and 

visual information, including the supplementary and cingulate eye fields and the frontal eye fields, suggesting that enactive 

processes are important in visual imagery. V1 was typically activated during visual imagery, even when participants have their 

eyes closed, consistent with influential depictive theories of visual imagery. Temporal lobe activation was restricted to area PH 

and regions of the fusiform gyrus, adjacent to the fusiform face complex. These results provide a secure foundation for future 

work to characterise in greater detail the functional contributions of specific areas to visual imagery. 

[250 Words] 

 

Introduction 
Imagination has attracted human interest for at least two thousand years (Mithen 1998; Modrak 1987; Hume 1784; see 

MacKisack et al. 2016 for a recent review), was disavowed by much of the academic community  in the first half of the 20
th

 

century (Watson, 1913), then played a central role in the subsequent Cognitive Revolution (Neisser, 1967). The protean nature 

of imagination confounds its clear definition (Thomas, 2003), yet facilitates its implication in diverse phenomena: motivation 

(McMahon, 1973), memory (Yates, 2014), emotional disorders (Holmes & Mathews, 2010), prospective thought (Addis, Wong, & 

Schacter, 2007), breast enlargement (Willard, 1977).  

We explore one specific aspect of imagination - visual imagery. This is a form of sensory imagination characterised by subjective 

experiences similar to perception, or at least by the mental representations that underlie such experiences (Block, 1983; Dennet, 

1978), with these experiences occurring in the absence of corresponding external stimuli (Finke, 1989; Richardson, 1998). First 

considered by philosophers, visual imagery was influentially suggested to provide a foundation for thought (Hume, 1784), with 

the intentionality of images suggested to provide a secure foundation for the meaning of language (Russell, 1921). Subsequent 

work powerfully challenged this view (Wittgenstein, 1953), and was followed by compelling arguments that invert the previously 

suggested relationship between language and imagery: much of the indeterminacy of images may actually be resolved through 

the addition of a language-based description (Fodor, 1975; Tye, 1991).  Within cognitive science, most conceptual discussions 

have centred on whether the mental representations that mediate visual imagery are depictive, in that they arise from activity 

in a visual buffer with crucial spatial properties (Kosslyn, 1981, 2005), or propositional: one product amongst many of a 

syntactically structured system (Pylyshyn 2003).These influential alternatives have been comprehensively evaluated  (Thomas, 

2014a; Tye, 1991); more recent enactive theories, which prioritise the role of attentional mechanisms and seem especially well-

placed to explain phenomena such as perceptual and representational neglect  (Bartolomeo, Bourgeois, Bourlon, & Migliaccio, 

2013; Thomas, 2003), have so-far received considerably less consideration (Thomas, 2014b). Empirically, the neural events 

associated with visual imagery can be studied using neuroimaging. In a typical task, participants are asked to imagine a generic 
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example of a common concrete object, such as a household item or a species of animal (D’Esposito et al., 1997; Ishai, 

Ungerleider, & Haxby, 2000; see Table 1 for further details). Neural events within these periods are contrasted with the patterns 

of activity observed at baseline, such as those observed when participants judge whether a given number is even (Mazard, Laou, 

Joliot, & Mellet, 2005).  

Crucially, the results of these studies bear directly upon the conceptual debates. For example, an absence of activity in V1 – the 

putative location of a prominently visual representation - would directly challenge the depictive theory of visual imagery 

(Kosslyn, 1981). However, the prospect of clarification through neuroimaging, both in relation to visual imagery and more 

generally, has been only partly fulfilled (Aue, Lavelle, & Cacioppo, 2009). An important reason for this is the diversity of 

terminology used to describe human neuroanatomy, with multiple distinct terms used to refer to the same anatomical or 

functional brain region, or the same term used to refer to different regions (Bohland, Bokil, Allen, & Mitra, 2009). This threatens 

to confound meaningful discussion: how could we judge the role of fusiform face area in visual imagery without consensus as to 

which locations should carry this name?  

The challenge of neuroanatomical nomenclature is not new (Wilder, 1896), but remained unresolved by attempts to compile 

comprehensive lists of names for neuroanatomical regions (Federative Committee on Anatomical Terminology, 1998), thesauri 

to relate these terms (Anthoney, 1993), or machine-readable ontologies (Bowden & Dubach, 2003; Rosse & Mejino, 2003; Rubin 

et al., 2006). Terminological problems are especially pronounced in human brain imaging, as anatomical regions in these images 

must be identified without immediate recourse to classical cytoarchitectural boundaries such as those of Brodmann areas. An 

element of standardisation was introduced through the widespread adoption of the Talairach atlas (Talairach & Tournoux, 

1988), especially once these labels could be automatically applied to the co-ordinates of observed activation (Lancaster et al., 

2000). However, such an approach is problematic (Bohland et al., 2009; Devlin & Poldrack, 2007; Evans, Janke, Collins, & Baillet, 

2012; Toga & Thompson, 2007), most obviously because the atlas is based on the left hemisphere of a single brain, that of a 60-

year old Caucasian woman, and therefore accurately represents neither the wider population nor any other individual.  

To address this, we used the cortical parcellation of 180 areas recently released as part of the Human Connectome Project 

(Glasser et al., 2016). These areas, of which 97 are newly identified, were defined on the basis of differences in cortical 

architecture, function, connectivity, and topography in a precisely aligned group average of 210 healthy young adults. This new 

resource is highly regarded (Gilmore, Diaz, Wyble, & Yarkoni, 2017; Jenkinson, Bannister, Brady, & Smith, 2002; Okano & 

Yamamori, 2016), and used in notable recent publications (e.g., Mackey, Winawer, & Curtis, 2017; Moreira, Marques, & 

Magalhães, 2016; Waskom & Wagner, 2017).  

The detailed interpretation of neuroimaging results is further complicated by the diversity of behavioural tasks used to evoke 

visual imagery but, even when studies use uncontroversial anatomical terms as well as similar methods and participants, striking 

differences in results remain. Perhaps the most important example of such disagreement concerns whether the activity of the 

primary visual cortex, V1, increases during visual imagery At least seven fMRI studies report that V1 is active during visual 

imagery (Amedi, Malach, & Pascual-Leone, 2005; Ganis, Thompson, & Kosslyn, 2004; Handy et al., 2004; Ishai et al., 2000; Klein, 

Paradis, Poline, Kosslyn, & Le Bihan, 2000; Lambert, Sampaio, Scheiber, & Mauss, 2002; Le Bihan et al., 1993), but at least six 

report that V1 is not active (D’Esposito et al. 1997; A Ishai, Ungerleider, and Haxby 2000; Knauff et al. 2000; Trojano et al. 2000; 

Formisano et al. 2002; Sack et al. 2002). Such contrasting findings are striking in themselves, but have garnered particular 

attention because they bear on the vigorous debate, mentioned above, as to whether the mental representations mediating 

visual imagery are depictive (Kosslyn, 1981, 2005), or propositional (Pylyshyn 2003,. Other points of discussion have included 

whether activation during imagery is bilateral or strongly lateralised (cf. Zvyagintsev et al. 2013 and Gardini et al. 2009; see 

Kosslyn et al. 2005 for review), and whether anatomically similar regions in each hemisphere mediate different aspects of 

imagery: for example, image generation in the left parietal lobe and spatial comparisons in the right (Boccia et al., 2015; Mazard 
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et al., 2005). 

Why do so many points of disagreement remain? One reason is that the small sample sizes typical of neuroimaging studies have 

low statistical power; studies whose results do reach significance are then difficult to replicate because, despite their  large 

effect sizes, these are unrepresentative (Button et al., 2013; David et al., 2013). Further complications arise from the variety of 

analytical approaches used in neuroimaging (Carp, 2012; Glatard et al., 2015). Within the literature on visual imagery, these 

issues are compounded by the fact that many studies took place early in the development of neuroimaging techniques, using 

statistical thresholds which would now be considered inappropriately lenient. Finally, separate to the challenges of anatomical 

labelling that arise from the sheer complexity of the human brain (Mai & Paxinos, 2012) there remains the seductive allure of  

ascribing activation to particular anatomical regions on the basis of these regions’ popularity or theoretical convenience 

(Behrens, Fox, Laird, & Smith, 2013). 

The impact of these issues can be minimised through co-ordinate based meta-analysis, a family of approaches for analysing 

neuroimaging data which maximise power and objectivity whilst removing the effects of inconsistencies in anatomical labelling. 

We used the most popular algorithm for coordinate-based meta-analysis, Activation Likelihood Estimation (ALE, Eickhoff et al., 

2016), the key feature of which is that reported foci are not treated as definite locations, but rather as the central point in a 

three-dimensional Gaussian distribution (Eickhoff et al., 2009). The foci from a single study are represented in a modelled 

activation map, thereby preserving the characteristic spatial relationship between foci, then voxel-wise ALE scores are calculated 

through the combination of the individual maps. Finally, the true convergence of foci is distinguished from random clustering by 

testing against the null-hypothesis of a random spatial association between experiments (Eickhoff et al., 2012; Turkeltaub et al., 

2002).Over 700 papers using the ALE algorithm have been published in the last decade. The work reported here, based on data 

from 464 participants and 40 papers, is the first to apply the method to the study of visual imagery. To the best of our 

knowledge, our study is also the first to combine the 180-region multi-modal parcellation of Glasser et al (2016) with co-ordinate 

based meta-analysis using the ALE algorithm. 

Methods 

Data Collection 

We used five portals to search for articles: the Web of Knowledge suite (WoK), PubMed, Embase, PsycINFO, and CINAHL. To 

ensure our searches were comprehensive and objective we optimised our search terms using text analytics. We therefore 

performed an initial search of the MEDLINE database via the WoK for papers with visual imagery in their title, and compiled the 

abstracts of the 50 most-cited papers in a single text document. We then used a Corpus Type Frequencies Grid to rank the words 

within this document by frequency (Taporware, Hermeneuti project). We excluded from this analysis the standard Taporware 

list of English Stop Words. This approach allowed us to supplement our original search terms with additional key words, whilst 

avoiding introducing our own bias; the full search-terms and algorithms are provided in the supplementary material.  

Our final searches identified a total of 4,069 papers on the 15
th

 June 2016. Papers were removed from this sample if they did not 

study humans (224), were not written in English (350), or were not one of the following: an article, meta-analysis, case report, 

letter, abstract or clinical trial (270). Of the remaining articles, 1,118 were duplicates and were therefore removed. Four 

members of the research group read the abstracts of the remaining 2,107 papers to establish their suitably on the basis of our a 

priori criteria.  

Inclusion criteria were that: 1) participants were healthy; 2) the papers were fMRI or PET experiments; 3) the papers 

investigated the imagery of scenes or objects, including faces, that did not require the involvement of any modality other than 

vision; 4) activation foci were given as 3D stereotactic (x, y, z) coordinates reported in Talairach or Montreal Neurological 
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Institute (MNI) format.  PET studies were included as a previous ALE meta-analysis of motor imagery had successfully 

incorporated both methodologies (Hetu et al., 2013), as have highly-influential ALE studies in other psychological domains (e.g. 

Binder, Desai, Graves, & Conant, 2009). Exclusion criteria were that: 1) the study data were already included through another 

identified publication; 2) the imagery task would draw prominently on more than one sensory modality.  

The application of the inclusion and exclusion criteria in screening the abstracts yielded a short-list of 75 papers. 49 of these 

papers were subsequently excluded for the following hierarchy of reasons: we were unable to find a copy of the paper (10), they 

were reviews (4), they did not actually report co-ordinates and requests for this information from the authors were unsuccessful 

(23), they did not actually examine visual imagination (11), they reported areas shared by imagery and a cognitive process 

purposefully activated in a separate task (1). We searched the bibliographies of the remaining 26 papers selected for inclusion, 

and thereby identified a further 18 papers for detailed screening; of these, 2 did not report co-ordinates, 1 was a review, and 1 

had no suitable comparison task; we included the remaining 14 papers. We ultimately identified 40 papers suitable for inclusion 

in our meta-analysis, which are summarised in Table 1. A full list of all the papers we short-listed and the reasons for their 

exclusion is available as supplementary material. 

Data Extraction 

We used activation foci identified through statistical comparisons made across the whole-brain and those restricted to regions 

of interest (ROI). We only included activation foci with P -values of <0.05, but accepted values regardless of whether they were 

uncorrected calculations, were based on a family-wise error rate, or used a false discovery rate. Some of these studies used 

statistical methods which would now be considered inappropriately lenient, but we included them nonetheless as false 

negatives (Type-II errors) are more problematic for ALE meta-analyses than false positives (Eickhoff, Bzdok, Laird, Kurth, & Fox, 

2012; Type-I errors, Laird et al., 2005) 

ALE   meta-analysis requires that study coordinates are in the same stereotactic space. We performed all calculations in 

Talairach space, for which the grey-matter mask used in GingerALE was developed (Eickhoff et al., 2009), and subsequently 

converted the final results to MNI space. Coordinates reported in MNI were transformed to Talairach space using the icbm2tal 

algorithm, (Laird et al., 2010; Lancaster et al., 2007)
 

which has greater accuracy than the mni2tal transformation (Brett, 

Johnsrude, & Owen, 2002). Where possible, coordinates that had been previously transformed to Talairach using mni2tal were 

transformed back to MNI using this algorithm, and then reprocessed with the icbm2tal algorithm. This introduces the hazard of 

compounding rounding errors, but such effects are smaller than the errors associated with the mni2tal transformation; indeed, 

there is evidence that the mni2tal transformation results in a poorer fit than if no conversion is applied (Laird et al., 2010). 
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ALE Meta-Analyses 

Activation likelihood estimation (ALE) is a form of co-ordinate-based meta-analysis that uses probability theory to characterise 

the spatial convergence of foci reported by neuroimaging studies (Turkeltaub, Eden, Jones, & Zeffiro, 2002). We used version 

2.3.6 of the GingerALE algorithm (brainmap.org) which is based upon the algorithm of Eickhoff et. al (2009) and incorporates 

empirically-based full-width half maxima (FWHM), and a grey-matter mask which excludes regions of white-matter from the 

comparison. This version also included important refinements that  prevent the summation of foci from the same study which 

are close to each other (Turkeltaub et al., 2012) and more effectively compute the null distribution of foci (Eickhoff et al., 2012). 

Our calculations used  an uncorrected P value of 0.001 for individual voxels (Eickhoff et al., 2012), and cluster-level family-wise 

error thresholding (0.05), an approach which provides the best compromise between sensitivity and specificity (Eickhoff et al., 

2016). For each comparison we completed 1000 control permutations, whereby GingerALE generated a random dataset with 

the same number of foci, participants and studies as our dataset. Based on our choices of a FWE threshold of 0.05 and 1000 

permutations the minimum cluster volume was determined as 1 mm
3 

larger than the 50
th

 smallest value observed across the full 

set of permutations; in consequence, this actual value differed between each comparison and would show minor variations 

between iterations. For each comparison, we report all the clusters which met this size criterion; no cluster is the result of foci 

from just a single study. .  Within each cluster, the first individual focus was simply the highest ALE value – itself a p-value 

summed across studies. Additional individual foci were reported within clusters for voxels whose ALE value was higher than 95% 

of all voxels in clusters of the same extent or greater, based on our FWE error-rate of 0.05  (Turkeltaub et al., 2012). These 

individual foci form the basis of our anatomical labelling. 

Anatomical labelling 

We report the extent of activation clusters, with our detailed interpretation based on the individual foci to maximise anatomical 

accuracy (Eickhoff et al. 2012, 2016). Small changes in threshold, which are intrinsic to permutation-based methods, can alter 

the overall shape and size of the final clusters by combining otherwise separate clusters in a given calculation. The location of 

individual foci is more consistent than that of the encompassing clusters  (Fox, Lancaster, Laird, & Eickhoff, 2014). This precision 

also facilitates the articulation of the substantive exclusionary statements – cognitive process A occurs if and only if the region at 

co-ordinates XYZ is active -  which are essential for effective deductive reasoning (Poldrack, 2006).    

It could be argued that such a pursuit of precision is inappropriate given the different approaches used in the contributing 

studies to image registration and normalisation (Bohland et al., 2009; Evans et al., 2012), as well as co-ordinate transformation 

(Laird et al., 2010). However, whilst such effects are probably not truly random, they are also unlikely to show sufficient 

consistency between the contributing studies to survive the statistical thresholding that forms part of the meta-analysis 

procedure.  

To optimise anatomical accuracy, given the well-established limitations of the Talairach and Tournoux (1988) atlas (Devlin & 

Poldrack, 2007), we used the cortical parcellation of 180 areas recently released as part of the Human Connectome Project 

(Glasser et al., 2016). These areas, of which 97 are newly identified, were defined on the basis of differences in cortical 

architecture, function, connectivity, and topography in a precisely aligned group average of 210 healthy young adults. For 

further contextual and cytological detail the work of Mai and Paxinos was invaluable (2012). Such an approach risks isolating our 

work from the existing literature, so our tables also include the anatomical labels and Brodmann area for each focus as provided 

by the widely-used Talairach daemon (Lancaster et al., 2000). 
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Image preparation 

For illustration, GingerALE images of significant convergence were transformed to MNI space using the FMRIB's Linear Image 

Registration Tool (FLIRT) in FSL (Jenkinson et al., 2002). Volumetric images show activations on the R440 group average T1-

weighted image released as part of the Human Connectome Project (HCP) database (https://ida.loni.usc.edu/login.jsp). The 

accompanying surface images used the surface mapping command in the Connectome Workbench (V1.2.3) to display volume 

data on the mid-thickness inflated brain based on the same 440 participants. The co-ordinates of individual foci were super-

imposed on these images as points of 5 mm diameter. Final images were prepared using CorelDraw Graphics Suite 2017 (v. 

19.0.0.328, Corel Corporation, Ottawa, Canada). 

Results 
We identified a total 634 foci in 40 individual experiments, based on measurements from 464 participants (64 % Male, > 95% 

right-handed, mean age 25.9 ± 4.8 years). Our first calculation combined all of these results, and thereby identified the areas 

most consistently activated during visual imagery. Additional comparisons based on sub-groups of studies allowed us to identify 

the neural correlates of imagery when participants had their eyes closed (Table 3), when the task involved only the generation of 

a common concrete object (Table 4), or when a comparison was made relative to a baseline other than rest (Table 5).  

The overall comparison identified 11 clusters of consistent activation and 22 individual foci within these clusters; four of these 

clusters were in the right hemisphere (Table 2). In all our comparisons, the resulting activation was often deep within sulci, but 

never in sub-cortical structures. The mid-thickness cortical surface, which is halfway between the pial and white matter surfaces, 

makes it easier to see these activations (Figure 1).  

Specifically, we observed bilateral activation of the posterior parietal cortex, with the extensive activation of the left hemisphere 

occupying a substantially larger volume than the activation of the right hemisphere: 8,952 mm
3 

compared to 1,512 mm
3
. In the 

left hemisphere there was strongly overlapping activation in intraparietal area 1 (IP1, Choi et al., 2006), and more modest 

overlap in intraparietal area 2 (IP2, Choi et al., 2006). As illustrated in Figure 2, this contiguous cluster encompassed three 

individual foci: superiorly, in the medial intraparietal area (a, MIP, Van Essen, Glasser, Dierker, & Harwell, 2012); posteriorly, in 

the recently identified intraparietal area 0 (c, IP0, Glasser et al., 2016); anteriorly, at the superior margin of the area PFm 

complex (b, Nieuwenhuys, Broere, & Cerliani, 2015). In the right hemisphere the medial intraparietal area was activated, as it 

was in the left hemisphere, with individual foci in area 1 of the intraparietal sulcus (m, IPS1, Hagler, Riecke, & Sereno, 2007) and 

area 2 of the parieto-occipital sulcus (n, POS2, Glasser et al., 2016).  

The second largest cluster of activation, with a volume of 3,760 mm
3
 centred on rostral area 6 of the left premotor cortex (6r, 

Amunts et al., 2010), with an individual focus also in this area (d), and extended rostrally to a second focus in area posterior 9-

46v of the orbital and polar frontal cortex (e, p9-46v, Petrides & Pandya, 1999). The superior premotor areas were activated 

bilaterally, with a cluster of 1,232 mm
3 

in the left hemisphere that encompassed an individual focus in the anterior part of area 6 

(s, 6a, Fischl et al., 2008), and extended into the superior part of the frontal eye field (FEF, Glasser & Van Essen, 2011). Activation 

in the right hemisphere also contained an individual focus in the anterior part of area 6 (u), with another focus in the inferior 6-8 

transitional area of the dorsolateral prefrontal cortex (v, i6-8, Triarhou, 2007). This right hemisphere cluster measured 1,088 

mm
3 

overall and, like that in the left hemisphere, encompassed the frontal eye field. 

The third largest cluster measured 3,280 mm
3
 and spanned the longitudinal fissure. In the left hemisphere there was an 

individual focus in the supplementary and cingulate eye field (f, SCEF, Amiez & Petrides, 2009), itself a recently identified sub-

region of the supplementary motor area (Glasser et al., 2016). The same cluster extended ventrally across the posterior 

boundary of anterior 24 prime (a24pr, Vogt & Palomero-Gallagher, 2012), with an individual focus at the superior edge of 

posterior 24 prime (h, p24pr, Vogt & Palomero-Gallagher, 2012). Activation in the right hemisphere extended more anteriorly 
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than that of the left hemisphere, encompassing the supplementary and cingulate eye field but extending to an individual focus 

in area 8BM (g, 8BM, Glasser et al., 2016). 

The largest cluster of activation in the right hemisphere, measuring 1,584 mm
2
, was centred in area PH, a recently redefined 

region of the posterior temporal cortex ( Glasser et al., 2016; PH, Triarhou, 2007), with an individual focus in the same area (l). 

An anterior region of area PH was activated in the left hemisphere, with the individual focus part of a cluster measuring 1,136 

mm
3
 (t). The activation in both hemispheres was lateral to the fusiform face complex (Glasser & Van Essen, 2011).  

Further activation in the right hemisphere was seen in a cluster of 1,424 mm
3
, with an individual focus and prominent activation 

in the anterior ventral insular area (o, AVI, Van Essen et al., 2012) and an individual focus at the inferior edge of the overlying 

area 44 (p, 44, Amunts et al., 2010). The left anterior ventral insular area was also activated (q, 1,280 mm
3
), with an individual 

focus in the recently described frontal opercular area 4 (r, FOP4, Glasser et al., 2016), and activation extending into frontal 

opercular area 5 (Glasser & Van Essen, 2011). The primary visual cortex was activated bilaterally, as part of a cluster measuring 

2,192 mm
3
, with two individual foci in the left hemisphere (i and k, V1, Abdollahi et al., 2014) and one focus in the right (j). 

This whole-group comparison aimed to maximise the power of our calculations by incorporating the largest possible sample of 

studies. However, any such increase in power is offset by the considerable heterogeneity of this group. Further, the whole-group 

comparison cannot provide insight into the patterns of activation associated with specific types of visual imagery task. We 

therefore conducted a series of additional ALE calculations to explore the patterns of activation seen in homogenous sub-groups 

of studies. It is important to note that these comparisons are not independent of each other: an individual study could be part of 

the overall comparison and one-or-more sub-group comparison. Full details as to which paper is in which comparison are 

provided in Table 1.   

1. The Eyes Closed Sub-group 

The first of these sub-groups included only those studies in which participants had their eyes closed. Such a comparison 

addresses the often-contentious issue of whether imagery activates primary visual areas (Kosslyn & Ochsner, 1994; Roland & 

Gulyás, 1994a) by removing the possibility that this area is stimulated directly by external cues. These calculations, which were 

based on 322 foci from 19 experiments and 179 participants, showed an overall pattern of activation that was similar to that 

seen in the whole-group comparison, in terms of localisation and lateralisation, but with smaller clusters of activation. In total, 

we saw eight clusters of activation and 15 individual foci (Table 3, Figure 3). These areas included the activation of V1, whilst 

four of the areas active in the whole-group comparison were no-longer active: the bilateral anterior ventral insular, the 

neighbouring area 44, and frontal opercular area 4. In other regions overlap now arose in anatomically distinct but adjacent 

areas – for example, intraparietal area 0 rather than 1. 

The largest cluster of activation was once again in the left posterior parietal cortex (7,136 mm
3
). Activation within this cluster 

encompassed area 1 of the intraparietal sulcus and the medial intraparietal area; the cluster’s rostral extension included 

individual foci in intraparietal areas 1 and 2 (aa, IP1; CC; IP2) and in the lateral intraparietal dorsal area which adjoins 

intraparietal area 2 (bb, LIPd, Van Essen et al., 2012). In the contralateral hemisphere, activation in this region was restricted to 

area 1 of the intraparietal sulcus (jj, 1,152 mm
3
). The second largest cluster, measuring 2,296 mm

3
, was centred in the primary 

visual cortex and contained two individual foci, one in each hemisphere (left, dd; right, ee); in the right hemisphere activation 

extended slightly into V2. Area PH was activated bilaterally (left, gg, 1,416 mm
3
; right, ff, 2,040 mm

3
), with activation in the left 

hemisphere extending slightly into the fusiform face complex. 

There were individual foci in the anterior part of the supplementary and cingulate eye field in both hemispheres (left, kk; right, 

ll), with activation in the right hemisphere extending anteriorly into area 8BM (mm); this cluster had a volume of 1,144 mm
3
. The 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
remaining clusters of activation were in premotor regions of the left hemisphere. There were two individual foci in a cluster of 

1,304 mm
3
, one in the recently identified area IFJp (hh, IFJp, Glasser et al., 2016) and another in the premotor eye field (ii, PEF, 

Amunts et al., 2010). Superiorly there was an individual focus in the left frontal eye field (nn, FEF), part of a 816 mm
3 

cluster.  

2. The Simple Generation Sub-group 

The second sub-group we compared characterised the activation present during the visual imagery of a common concrete 

object, such as an animal or a chair. This is an explicit test of imagery generation (Kosslyn et al., 2005; Mechelli, Price, Friston, & 

Ishai, 2004), and is less demanding than tasks which require a decision based on the attributes of the image (e.g. Formisano et 

al., 2002; Trojano et al., 2000). Some neuroimaging studies have examined differences in the neural correlates of imagining 

particular types of object – for example, faces and places – but there were too few of these studies for us to compare them. In 

total, we identified 16 studies and 197 foci to include in these calculations, from which we identified five clusters of activation 

and ten individual foci (Table 4, Figure 4). 

The largest cluster of activation (1,952 mm
3
), with a single individual focus (aaa), was in the left supplementary and cingulate 

eye field and extended laterally to areas 6a and 6ma, but not medially to the right hemisphere as it had in the eyes closed 

comparison. The second largest cluster of activation (1,944 mm
3
) spanned the central part of the fusiform face complex, with a 

single individual focus in this area (BBB), extending superiorly to area PH (ccc) and a further individual focus in area PHT (ddd, 

Triarhou, 2007). Area PH was also consistently activated in the right hemisphere (jjj, 880 mm
3
). As with the other comparisons 

there was activation is the left posterior parietal cortex; there was no contralateral activation. Specifically, there were individual 

foci in intraparietal areas 0 and 1 (fff, eee) and intraparietal sulcus 1 (ggg). Finally, we saw a cluster of activation (936 mm
3
) in 

the inferior frontal cortex which extended anteriorly across area IFJa from an individual focus in area IFJp (hhh), to another 

individual focus in the recently defined area IFSp (iii, Glasser et al., 2016) 

The activations of the fusiform face complex and area IFSp were novel to the simple-generation sub-group; the insula and 

frontal operculum were again inactive, having only been observed in the whole-group comparison. It is also notable that V1, 

which was active in the overall comparison and the eyes-closed group, was not active. The power of the simple-generation sub-

group was sufficient for these findings to be considered robust (Eickhoff et al., 2016), so this is a notable finding.   

3. The Active Baseline Sub-group 

The final sub-group comparison characterised activation during visual imagery tasks relative to an active baseline condition, such 

as judging whether a letter was a vowel or a number was even.  This comparison enabled us to better identify components of 

the default mode network that are activated in visual imagery tasks but might be obscured by comparisons with a passive 

baseline. In total, we identified 23 experiments and 286 foci to include in these calculations, from which we identified seven 

clusters of activation and 15 individual foci (Table 5, Figure 5). 

The largest cluster of activation, measuring 4,272 mm
2 

and left lateralised, contained four individual foci; this cluster extended 

anteriorly from IP0 (x3) across IP1 (x1, x2) to the border of IP2 and area lateral intraparietal dorsal (LIPd, x4). Anterior area 6 was 

activated bilaterally, with two individual foci in both the right hemisphere (1,312 mm
2
; x5, x6) and the left (1,296 mm

2
; x7, x8). 

Activation in the inferior parietal lobe extended medially from an individual focus in IPS1 (x10) to foci in parieto-occipital sulcus 

area 2 (x9) and the dorsal transitional visual area (x11), close to its boundary with V6. Further activation was seen in frontal 

opercular area 4 (1,256 mm
2
, x12), and superiorly in rostral area 6 and area IFJp (1,072 mm

2
; x13, x14). Finally, there was a 

cluster of 792 mm
2
, with an individual focus in the anterior ventral insula area (x15). 
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Discussion 

The aim of this study was to identify the brain regions whose activation is associated with visual imagery by performing a co-

ordinate-based meta-analysis of previously published neuroimaging data. This is the first such analysis of visual imagery data, 

and draws on data from 464 participants to introduce new levels of clarity and precision to this popular but often contested 

field.  Data were entered into calculations both in combination and in a series of sub-group comparisons. In this Discussion we 

consider the regions activated in these comparisons lobe by lobe, before considering some important limitations to the reported 

work.  

 

1. Parietal lobes: The superior parietal lobule 

In our whole-group comparison we saw activation in the posterior parietal cortex, above the inferior parietal sulcus in the 

superior parietal lobule and Brodmann area 7 (Caspers, Amunts, & Zilles, 2012), with the vast majority of activation in the left 

hemisphere. This area has been associated with attention and working memory (Wager & Smith, 2003; Wojciulik & Kanwisher, 

1999) and the top-down control of visual imagery (Mechelli et al., 2004). More specifically, we saw contiguous activation in the 

left hemisphere from Intraparietal Area 0 to 2, with the consistency of Intraparietal Area 1 (IP1) activation especially 

pronounced; IP1 was activated in every sub-group comparison. Adjacently superior and parallel to these areas we saw 

consistent activation in IPS1, MIP and the dorsal and ventral LIP (Figure 1). In the right hemisphere, only IP1, IPS1 and MIP were 

activated, albeit at a lower level of consistency than in the left hemisphere (Figure 1).  

Previous work has linked the left posterior parietal cortex (PPC) specifically to the generation of visual images (Bien & Sack, 

2014; Knauff et al., 2000; Mechelli et al., 2004). In normal operation left-lateralised PPC activity precedes that of the right 

hemisphere (de Borst et al., 2012a; Formisano et al., 2002). Nonetheless, activation of the left PPC is not essential for image 

generation: when the left PPC is temporarily lesioned using repetitive TMS image generation is unaffected, but can be finally 

disrupted with additional TMS of the right PPC (Sack, Camprodon, Pascual-Leone, & Goebel, 2005).   

Variations in task demands could explain why only a relatively small part of the right posterior parietal lobe was consistently 

activated. The right PPC is activated during imagery tasks that necessitate explicit spatial comparisons (Boccia et al., 2015; 

Formisano et al., 2002; Sack et al., 2005), with the mental clock task (Paivio, 1978) the most widely-used test of spatial mental 

imagery. In this task, participants are presented with two times and judge which would yield the greatest angle between the 

hands of an analogue clock-face. Where the difficulty of this comparison is increased by small angles between the clock-hands so 

too is the activation of the right PPC (Bien & Sack, 2014). There were too few studies of spatial comparisons for us to compare 

them using ALE. 

Dynamic casual modelling shows that top-down input from the superior parietal lobule to the occipito-temporal cortex is non-

selective – it makes no difference whether houses, faces or chairs form the content of participants’ visual imagery (Mechelli et 

al. 2004). These different object types are associated with distinctive patterns of activation in the occipito-temporal cortex 

during imagery, as they are during perception, but this arises through top-down input from pre-frontal areas (ibid). The input 

from superior parietal regions could mediate an essential attentional component of visual imagery processes (Ishai, 2010; Ishai 

et al., 2000), and it is striking that the consistent activation we observed in the lateral intraparietal dorsal area (Table 2, 4) 

corresponds closely to the parietal area reliably activated during three different forms of visual attention (Wojciulik & 

Kanwisher, 1999). Of these, attention in the absence of stimuli may be a top-down preparatory process that supports the 

subsequent goal-directed selection of important stimuli and appropriate responses (Battistoni, Stein, & Peelen, 2017; Corbetta 

& Shulman, 2002). One might then posit a role for visual images in guiding attention itself, but to the contrary a visual search 

strategy based on imagery is less efficient than a strategy based on using semantic categories (Peelen & Kastner, 2011). Finally, 
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similar superior parietal regions are activated in visual imagery and working memory (Pearson, Naselaris, Holmes, & Kosslyn, 

2015), with more vivid imagery linked to better performance in visual working memory tasks (Keogh & Pearson, 2014).  

 

2. Frontal lobes:  

i) The supplementary and cingulate eye field 

We observed bilateral medial frontal activations centred in the supplementary and cingulate eye field (SCEF). The SCEF lies on 

the medial surface of the superior frontal gyrus, a sub-region of the supplementary motor area (Amiez & Petrides, 2009) and 

Brodmann area 6 (Petrides & Pandya, 2012), most clearly distinguished from neighbouring regions by its dense myelination 

(Glasser et al., 2016). The SCEF adjoins the anterior cingulate and medial prefrontal cortex, which have recently been divided 

into 15 sub-regions (Glasser et al., 2016). The SCEF is named to reflect its functional connectivity with the frontal and premotor 

eye fields (areas FEF and PEF, Glasser et al., 2016). The left SCEF was active in every comparison apart from the baseline sub-

group; the right SCEF was active only in the overall and eyes-closed comparisons, but differences in lateralisation should be 

considered cautiously given that the region adjoins the mid-line. Activations in this area were reported by twelve of the papers 

whose data were used in these calculations, and when referred to explicitly were identified as belonging to either the anterior 

cingulate  (Yomogida et al., 2004) or the medial frontal gyrus (Ganis et al., 2004). Such terms were not inaccurate based on 

anatomical standards of the time, but our approach illustrates a key benefit of precise anatomical description: the anterior 

cingulate label is used by at least 15% of all studies in the Neurosynth database (accessed 1st June 2017, Yarkoni, Poldrack, 

Nichols, Van Essen, & Wager, 2011). This presents opportunities for reverse inference on a grand scale (Poldrack, 2011), and 

should be viewed as highlighting the danger of anatomical imprecision rather than the region’s actual involvement in diverse 

processes. 

Early studies suggested the area we refer to as SCEF was activated during visual imagery (Gulyas, 2001; Trojano et al., 2000), and 

perhaps played a role in image generation as it was one of the first areas to become active during imagery  (Formisano et al., 

2002; Sack et al., 2002). Perhaps the most elegant evidence for  the importance of the SCEF activation for visual imagery comes 

from the demonstration that the degree to which it is activated predicted imagery performance (de Borst et al., 2012b). 

Specifically, SCEF activation was greater during fast than slow responses when participants correctly judged that a visually 

presented fragment of a scene was a mirrored component of a previously learned complex visual scene. De Borst’s dynamic 

model of scene imagery, informed by evidence that this region becomes active early in the process of visualisation, might 

suggest that activity here launches the process of visualisation through the retrieval and integration of visuospatial information. 

Our calculations broadly support the central role of the SCEF in visual imagery, whilst the absence of their activation in the active 

baseline comparison may reflect demands for working memory (Glasser et al., 2016), and the closely-allied process of attention 

(Gazzaley & Nobre, 2012), in the control condition in those tasks.  

 

ii. Superior premotor areas 

We observed bilateral activation within the superior subdivision of the premotor cortex in our overall comparison: the frontal 

eye field (FEF), area 6 anterior, and the inferior 6-8 transitional area (Glasser et al., 2016). The anatomical delineation of these 

areas has long been complicated by the high inter-individual variability of sulcal landmarks in this region (Geyer, Luppino, & 

Rozzi, 2012)  Activation in these specific areas has received little consideration within the imagery literature, though there is 

evidence from dynamic causal modelling for top-down input to the temporal lobes from the wider precentral region during 

imagery (Mechelli et al., 2004).  
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It is well-established that neurons in the FEFs and neighbouring regions integrate visual and motor information to yield a 

retinotopic map of visual space that serves to guide the amplitude and direction of saccades (Bruce, Goldberg, Bushnell, & 

Stanton, 1985). It has been suggested that the continuation of such eye movements during imagery could be the basis of V1 

activation (Ganis et al., 2004). Less speculatively, there is compelling evidence that the FEFs modulate visual attention through 

top-down input to early visual areas. For example, current injection in the macaque FEFs increases contrast sensitivity in V4 

neurons during spatially-directed attention (Moore & Armstrong, 2003), and transcranial magnetic stimulation (TMS) of the 

human FEF has been associated with an increased BOLD signal in V1-4 (Ruff et al., 2006). Similar interactions were seen when 

activity was generated endogenously through participants performing a demanding visual spatial attention task, work which also 

demonstrated that top-down input  was greater than the reverse bottom-up flow of information (Bressler, Tang, Sylvester, 

Shulman, & Corbetta, 2008).  

The scale of this top-down input makes the absence of activity in early visual areas other than V1 a surprising feature of our 

results. Nonetheless, this superior frontal activation may help to drive activity in posterior cortices which support the 

representations we experience as visual imagery. 

 

iii. Inferior premotor areas and the inferior frontal sulcus 

We saw activation in two parts of the inferior premotor cortex, itself a part of the inferior frontal gyrus which is separated from 

the superior division of the premotor cortex by area 55b: rostral area 6 and the premotor eye field (Amunts et al., 2010). These 

effects were strongly lateralised: neither area was active in the right hemisphere. Similar to the superior premotor cortex, these 

inferior regions are also of considerable anatomical complexity and functional heterogeneity (Roland & Zilles, 1996); small 

differences in location yield very different anatomical labels (Evans et al., 2012). For example, the focus we identify as falling in 

IFJp of the inferior frontal sulcus adjoins area 8C of the dlPFC, itself a rather non-specific term for an area since shown to be 

composed of at least 13 sub-regions (Glasser et al., 2016). 

In terms of functional roles, one obvious possibility is that the activation of rostral area 6 reflects the execution of a motor task 

such as pressing a button to indicate whether a given probe would overlap with particular imagined pattern. Of the 16 studies 

that contributed to this focus, seven had no motor responses in either the baseline or imagery tasks; five used protocols that 

effectively controlled for motor activation through a combination of counterbalancing the response hand and baseline tasks 

with similar motor demands. As far as we could tell, the remaining four studies included motor responses only during the 

imagery tasks (Bien & Sack, 2014; de Borst et al., 2012b; Formisano et al., 2002; Yomogida et al., 2004). This is a serious 

confound for the interpretation of these individual studies, but activation in rostral area 6 remained when these four studies 

were removed, suggesting activation is not due to motor demands. Activation of this area is also seen during perception (Ganis 

et al., 2004), with greater activation during imagery perhaps reflecting the greater difficulty of this task (Kukolja, Marshall, & 

Fink, 2006).  

In the wider literature, activation in rostral area 6 has been clearly associated with the phonological and semantic processing of 

natural language (Binder et al., 2009; Poldrack et al., 1999), as have areas IFJp and IFJa of the inferior frontal sulcus and posterior 

9-46v in the dorsolateral prefrontal cortex (Roland & Zilles, 1996) which are involved in semantic generation (Wager & Smith, 

2003), semantic encoding (Demb et al., 1995) and semantic decision-making (Vandenberghe, Price, Wise, Josephs, & Frackowiak, 

1996).  

Inferior premotor areas and the inferior frontal sulcus are also highly active during tasks that require selection among competing 

sources of information in working memory to guide a response (Glasser et al., 2016; Thompson-Schill, D’Esposito, Aguirre, & 

Farah, 1997). Their activation in imagery tasks could correspond to the greater difficulty of imagery than perception - though it is 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
striking that such activations are typically bilateral whereas the activations we observed with imagery were only in the left 

hemisphere.  

In summary, the frontal activations, like the recruitment of the superior parietal cortex, plausibly reflect the engagement of 

attention and working memory, with a possible contribution from semantic processes. This meta-analysis also points specifically 

to the involvement of frontal lobe regions linked to the control of eye movements during visual imagery. 

 

3. Occipital lobes: Primary Visual Cortex 

The medial part of the primary visual cortex, area V1, was activated bilaterally in our overall comparison and, more importantly, 

during tasks in which participants had their eyes closed. This is a notable finding, as the activation of V1 has been a point of 

dispute ever since the neural correlates of visual imagery were first studied. Early studies using single photon emission 

computerized tomography (SPECT) reported increased blood flow in the occipital cortex during visual imagery (Goldenberg et 

al., 1989; Roland & Friberg, 1985), but then conflicting evidence emerged (Charlot, Tzourio, Zilbovicius, Mazoyer, & Denis, 1992). 

A subsequent series of influential PET studies were held to show the activation of V1 during visual imagery (Kosslyn et al. 1993), 

with V1 activation dependent on the size of the mental image for its precise location (Kosslyn et al. 1995) and overlapping with 

the activation observed during visual perception (Kosslyn, Thompson, & Alpert, 1997). However, other PET studies offered 

apparently contradictory evidence (Mellet et al., 1996, 2000, Mellet, Tzourio, Denis, & Mazoyer, 1995, 1998), and the 

interpretation of all these data was controversial (Farah 1994; Roland and Gulyás 1994b). A similar pattern of inconsistent 

findings and contested interpretations emerged as fMRI became the technique most widely used to study visual imagery. Thus, 

to the best of our knowledge there are at least seven fMRI studies showing V1 is active during visual imagery (e.g. Klein et al. 

2000; Amedi, Malach, and Pascual-Leone 2005; Mazard et al. 2005) and at least six showing V1 is not activated (e.g. D’Esposito 

et al. 1997; Ishai, Ungerleider, and Haxby 2000; Yomogida et al. 2004). These discrepancies could reflect the dependence of V1 

activation on whether tasks require images with high resolution detail or shape judgements (Kosslyn & Thompson, 2003), as well 

as variations in imagery vividness (Cui, Jeter, Yang, Montague, & Eagleman, 2007; Dijkstra, Bosch, & Gerven, 2017). 

The question then still remains as to whether the activation of V1 is characteristic of visual imagery. V1 activation could simply 

reflect direct stimulation by visually-presented task instructions, but remained in our calculations when participants had their 

eyes closed. On the other hand, the simple generation comparison, in which V1 was not activated, could suggest that V1 

activation is not essential for all imagery tasks. However, the simple generation calculations were based upon a small number of 

foci, which reduces the likelihood of convergence and thus increases the chance of a false negative. A false negative for V1 could 

also arise from its distinctively high level of activity at rest (Muckli & Petro, 2013), since comparisons based on univariate 

changes in the BOLD signal would necessitate substantial changes during a given task for its activity to reach statistical 

significance. It is therefore plausible that the degree of V1 activation has previously been under-estimated, 

The co-activation of areas known to provide input to V1 during visual imagery would provide circumstantial support for V1 

activation. It is therefore notable that,  the posterior intraparietal sulcus was extensively activated in our comparisons. There are 

direct connections between the posterior IPS and visual cortex in macaque (Baizer, Ungerleider, & Desimone, 1991; Lewis & Van 

Essen, 2000), and evidence from human fMRI that input from the posterior IPS to V1 modulates spatial attention (Lauritzen, 

D’Esposito, Heeger, & Silver, 2009). This modulation of spatial attention by the posterior IPS may derive from integration in the 

anterior IPS of input from across the frontoparietal attention network, receiving information on orientation from the superior 

parietal lobule (Greenberg, Esterman, Wilson, Serences, & Yantis, 2010), on distractor filtering from the inferior frontal gyri 

(Leber, 2010) and on eye-movements from the frontal eye fields (Van Ettinger-Veenstra et al., 2009).  
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Other areas, whose co-activation with V1 might be anticipated, are conspicuous by their absence: we did not see activation of 

other early visual areas. We consider some possible reasons for this in the section addressing the limitations of the current work. 

Another possibility arises from recent studies using multivoxel pattern classification analysis (MVPA), a technique with the 

sensitivity to detect even small co-variations in activity across groups of voxels. These have shown activation during visual 

imagery across early visual areas and striking demonstrations that patterns of V1 activity are similar during the perception and 

imagery of simple stimuli (Albers, Kok, Toni, Dijkerman, & de Lange, 2013; Cichy, Heinzle, & Haynes, 2012; Lee, Kravitz, & Baker, 

2012).  However, this similarity could simply reflect consistent demands upon processes such as attention (Kamitani & Tong, 

2005), reward expectation (Serences, 2008), or auditory stimulation (Vetter, Smith, & Muckli, 2014), rather than features of 

visual imagery per se. It is therefore important that voxel-wise encoding, which characterises the dependence of activation in 

individual voxels on separable components of retinotopic location, spatial frequency, and orientation, also found similar 

activation in V1 for the perception and imagery of low-level visual features (Naselaris, Olman, Stansbury, Ugurbil, & Gallant, 

2015)  

What is the likely functional role of V1 in visual imagery? Top-down cortical input to V1 is substantial, but lacks the inter-neuron 

and inter-laminar spatial precision of the bottom-up input from the lateral geniculate nucleus (Markov et al., 2014). This 

suggests that – even taking into account the studies using MVPA - V1 may not play the literally depictive role proposed in some 

theories of visual imagery, in which a close correspondence between spatial patterns of V1 activation and spatial features of 

represented objects is of central importance (Kosslyn, 1981, 2005). Indeed, the areas of pronounced co-activation that we 

observe start to suggest alternative explanations for the activation of V1 during visual imagery. For example, top-down input to 

V1 could serve to constrain the interpretation of otherwise ambiguous sensory information to specify imagery content, in a 

manner similar to that seen with the perception of a face in a white-noise visual stimulus (Smith, Gosselin, & Schyns, 2012), akin 

to the Pareidolia typified by falsely perceiving a common concrete objects in a cloud formations (Liu et al., 2014).  More 

speculatively, increasing the top-down gain (Muckli & Petro, 2013) for V1 activity at rest could promote imagery experiences in 

the absence of any visual stimuli.  

 

4 Temporal Lobes 

We observed activation in the ventral temporal cortex, where the ventral stream which mediates visual categorisation and 

recognition diverges across a range of functionally and anatomically discrete areas (Grill-Spector & Weiner, 2014). Bilateral 

activation in our overall comparison centred on the recently redefined Area PH (Glasser et al., 2016), and extended only slightly 

into the Fusiform Face Complex (FFC), which lies laterally and inferiorly (Weiner et al., 2014). Five of the eight papers whose co-

ordinates contributed to the cluster of activation in the left hemisphere seen in the overall comparison identified their co-

ordinates as falling within the fusiform cortex, and interpreted their results in relation to this literature. For some of these 

studies the clusters of activation represented by these co-ordinates did indeed extend to the Fusiform Face Complex 

(Belardinelli et al., 2009; de Borst et al., 2012b), yet our data show Area PH to be the area in this region most consistently 

activated. Co-ordinates within Area PH have only rarely been reported in the wider neuroimaging literature  (Yarkoni et al., 

2011), though it is striking that it is strongly functionally connected to IPS1 (Glasser et al., 2016), itself one of the areas that is 

most consistently activated during visual imagery. One of the few neuroimaging studies to report activity in area PH showed its 

activity significantly decreased during the successive presentation of objects with similar physical features, independently of 

their semantic similarity (Chouinard, Morrissey, Köhler, & Goodale, 2008).  

The question then remains, why were so few regions of the temporal lobe activated? To some extent this may reflect the 

residual heterogeneity between studies. It is well-established that different object types are represented at different points 
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along the anterior-posterior axis of the temporal lobe (Ishai et al., 2000; Mechelli et al., 2004; Thompson-Schill, Aguirre, 

D’Esposito, & Farah, 1999). However, there were too few studies that compared specific categories of concrete object for their 

analysis as separate groups in the present work. It is also possible that some of the other regions active during visual imagery 

reduce the activity of temporal regions. For example, dynamic causal modelling shows that input from the FEF inhibits the 

temporo-parietal junction when informative visual stimuli are absent (Vossel, Geng, & Fink, 2014). Such stimuli are typically 

absent during visual imagery, whilst the FEF are consistently active. Finally, given that the hippocampus is active at rest (Stark & 

Squire, 2001) and is also likely to be engaged in many of the active baseline tasks (Shulman et al., 1997), its activity may remain 

during visual imagery but not increase sufficiently to reach statistical significance.  

Limitations 

The ALE form of co-ordinate-based meta-analysis allows the precise location of an effect across a range of tasks intended to 

engage a particular psychological capacity. The identified regions are strong candidates for involvement in the process in 

question, but there are several important limitations to such an analysis. First, unlike meta-analyses used in other fields of 

research (Palmer & Sterne, 2015). ALE calculations based on neuroimaging do not consider the size of an effect; consequently, 

they cannot include evidence for the absence of an effect, so-called null results. Second, ALE calculations will only identify brain 

regions consistently activated despite differences in the associated tasks; differences between tasks may underlie the lack of 

activation we observed in early visual areas other than V1 and in lateral temporal regions. Third, ALE cannot illuminate the 

temporal dynamics of cognitive processes.  

Finally, we have related our findings to the most detailed parcellation of cortical areas to-date (Glasser et al., 2016), but intrinsic 

features of neuroimaging modalities themselves mean the unavoidable noise in the process of brain imaging implies that 

localisation can only be approximate (Buxton, 2002). Ultimately, we outline a set of key regions engaged in visual imagery, whilst 

the execution of specific tasks is likely to engage a range of additional areas. 

Conclusion 

The work reported here is the first to combine the ALE algorithm for the co-ordinate based meta-analysis of neuroimaging data 

with a recently-released parcellation of the human neuroanatomy (Glasser et al., 2016), the most detailed anatomical atlas for 

the human yet produced. Our exploration of visual imagery, which encompassed data from 464 participants and 40 individual 

studies, showed imagery predominantly activated regions of the left hemisphere. The superior parietal lobule was consistently 

activated in all our comparisons, suggesting that attentional processes are an important aspect of visual imagery. V1 is typically 

activated during visual imagery, even when participants have their eyes closed, which is consistent with important depictive 

theories of visual imagery  (Kosslyn, 1981, 2005); the absence of V1 activation in the simple generation sub-group raises a note 

of caution to this interpretation, whilst the lack of activation in other early visual areas is surprising. The activation of inferior 

premotor areas and the inferior frontal sulcus suggests that semantic operations are important for the construction and 

utilisation of mental images, a finding required by propositional theories of visual imagery (Pylyshyn, 2003). The activation of the 

superior and cingulate eye field and the frontal eye field suggest that eye movements are also important aspects of visual 

imagery processes, and offer support for often over-looked enactive theories of imagery (Bartolomeo et al., 2013; Thomas, 

2003). 
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Tables 

Table 1. Studies that examined visual imagery and were included in our ALE calculations. Also included are brief descriptions of 

the baseline condition and the visual imagery task from which we used co-ordinates.  

Author 
 

 

Year 
 Baseline task 

 

 

Visual imagery Task 

 

Sub-

groups  

Kosslyn 1993 View lower-case letter Same letter in  upper-case, superimposed 

on grid; judge superposition of probe 

 

Roland  1995 Recognition of trained pattern Imagine series of trained patterns A, C 

Kosslyn 1995 Aural common object and spatial comparison Imagine large -size image: trained concrete 

object 

A, B, C 

Mellet 1996 Aural words phonetically similar to 

instructions 

Imagine completed assembly of 12 

connected 3D cubes, following instructions 

A, B, C 

Kosslyn 1997 View canonical and non-canonical images of 

objects; view letters 

Upper-case letter superimposed on grid, 

after viewing lower-case letter; judge 

superposition 

 

D'Esposito 1997 Aural abstract words Imagine common concrete object A, B, C 

Mellet 1998 "Rest"  Imagine common concrete object A, B 

Ishai 2000 View grey square Imagine familiar concrete object: directed 

to house/chair/face 

 

Knauff 2000 View pattern superimposed on grid Imagine familiar pattern superimposed on 

grid; judge superposition 

 

Mellet 2000 T/F to "comparison statements" Imagine trained set of geometric objects; 

judge relative height of components 

A, B, C 

Trojano 2000 View analogue clock; spatial judgement of 

angle between clock hands 

Imagine aural time; spatial judgement of 

angle between clock hands 

A, B, C 

Gulyás 2001 Defocused thought Imagine capital letters (alphabet or first 

letter of successive words in national 

anthem)  

A, B 

Thompson 2001 Button press for 3rd neutral word in series Imagine two trained patterns; judge relative 

dimensions 

A, C 

Formisano 2002 Fixate cross Imagine written time; spatial judgement of 

angle between clock hands 

 

Ishai 2002 View letter string Imagine celebrity (grouped Short-Term 

Mem - earlier in session -  & LTM - No prior 

viewing) 

 

Sack 2002 Rest: the brief period between trials Imagine aurally presented time; spatial 

judgement of angle between clock hands 

 

Lambert 2002 Aural abstract words Imagine common concrete object: animals A, B, C 

Vanlierde 2003 Aural abstract words Imagine pattern superimposed on grid; 

judge symmetry 

A, C 
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Mechelli 2004 View grey square Imagine familiar concrete object: choice of 

house/chair/face 

 

Yomogida 2004 Fixate cross Imagine familiar concrete object B 

Ganis 2004 Rest: the brief period between trials Imagine trained line-drawing of concrete 

object; answer property-related question 

A, 

Belardinelli 2004 View neutral sentence describing abstract 

concept 

Imagine familiar concrete object B, C 

Handy 2004 Aural abstract words Imagine common concrete object A, B, C 

Amedi 2005 "Rest" Imagine familiar concrete object A, B 

Mazard 2005 T/F to letter as vowel and evenness of number Imagine trained line drawing A, B, C 

Gardini 2005 Read visual pseudo-word; button press on its 

appearance 

Imagine general example of common 

concrete object 

B, C 

Kosslyn 2005 Respond to visual cue with button press Imagine visually trained pattern; judge 

whether probe would overlap with 

imagined pattern 

C 

Kukolja 2006 View analogue clock; spatial judgement of 

angle between clock hands 

Imagine written time; spatial judgement of 

angle between clock hands 

C 

Kukolja 2006 Aural abstract words Imagine written time; spatial judgement of 

angle between clock hands 

 

Belardinelli 2009 Aural abstract words Imagine common concrete object B, C 

Gardini 2009 Aural pseudo-words Imagine general example of common 

concrete object 

B, C 

Palmiero 2009 Aural pseudo-words Imagine general example of common 

concrete object 

B, C 

Zeman 2010 View letter string Imagine famous face  

Lacey 2010 Aural word-pair judgment Imagine two common concrete objects; 

judge similarity of shape 

A, C 

Huijbers 2011 Unsuccessful imagery Successful imagery: grouped visual imagery 

and auditory imagery of common concrete 

objects 

C 

de Borst 2012 Fixate cross Imagine trained scene: room with three 

objects; judge whether probe is a 

component 

 

de Araujo 2012 View scrambled image Imagine trained concrete object: people, 

animal or tree 

 

Zvyagintsev 2013 Count-back Imagine familiar concrete object B, C 

Bien 2014 Fixate cross Imagine aurally presented time; spatial 

judgement of angle between clock hands 

 

Boccia 2015 Fixate cross Visuo-spatial imagination: grouped clock, 

navigational and geographical tasks 

 

Bonino 2015 Two aural times - judge chronological order Imagine aural time; spatial judgement of C 
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angle between clock hands 

 

Note. The sub-groups column identifies those studies which were also used in sub-group comparisons, with group A comprising 

those in which participants had their eyes closed, group B imagery generation tasks, and group C activation relative to an active 

baseline. 

 

 

 

Table 2. Areas consistently activated in the overall comparison of visual imagery studies.  

Cluster 

number 

Volume 

(mm3) 

Focus co-ordinates 

(MNI) 

Reference Anatomical label 

X Y Z Talairach daemon Multi-modal parcellation, Glasser 

2016 

1 

 

 

8,952 -26 -68 48 a Sup. parietal lobule, BA7 Medial intraparietal area 

-41 -47 51 b Inferior parietal lobule, BA40 Area PFm complex 

-30 -77 35 c Sup. occipital gyrus Intraparietal area 0 

2 

 

3,760 -47 5 30 d Precentral gyrus Rostral area 6 

-43 26 28 e Middle frontal gyrus Area posterior 9-46v 

3 

 

 

3,280 -5 12 49 f Sup. frontal gyrus Supplementary and cingulate eye field  

10 21 46 g Medial frontal gyrus Area 8BM  

-5 5 38 h Cingulate gyrus, BA24 Posterior 24 prime 

4 

 

 

2,192 -3 -77 4 i Lingual gyrus V1 

8 -83 11 j Cuneus V1 

-3 -88 -4 k Lingual gyrus, BA18 V1 

5 1,584 52 -56 -13 l Fusiform gyrus, BA37 Area PH 

6 

 

1,512 25 -70 45 m Precuneus, BA7 Intraparietal sulcus 1 

18 -62 29 n Precuneus, BA31 Parieto-occipital sulcus area 2 

7 

 

1,424 37 24 -5 o Insula, BA13 Anterior ventral insular area  

45 20 -1 p Insula Area 44 

8 

 

1,280 -31 20 -2 q Insula Anterior ventral insular area  

-33 22 6 r Insula, BA13 Frontal opercular area 4 

9 1,232 -30 -4 55 s Precentral gyrus, BA6 Area 6 anterior 

10 1,136 -47 -57 -13 t Fusiform gyrus, BA37 Area PH 

11 

 

1,088 33 -4 52 u Precentral gyrus, BA6 Area 6 anterior 

31 9 60 v Middle frontal gyrus Inferior 6-8 transitional area  

 

Note. The total volume of each cluster is reported, as well as the individual foci within it which reached statistical significance.  

For convenience, each individual focus is also referenced by a single letter in Figure 2 and the main text. Individual foci are 

identified using anatomical labels from the parcellation of Glasser et. al. (2016). To facilitate comparison with the existing 

literature the labels provided by the Talairach daemon (Lancaster et al., 2000) are also provided, including Brodmann cytological 

areas if these were also indicated. Some foci do not have a Brodmann area, because no such label was nearby. The differences 

between the Glasser and Talairach terms illustrates the greater anatomical accuracy made possible through the recent multi-

modal parcellation. The minimum cluster size for this comparison was 1,032 mm
3. 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 3. Areas consistently activated in the eyes closed comparison of visual imagery studies.  

Cluster 

number 

Volume 

(mm3) 

Focus co-ordinates (MNI) Reference Anatomical label 

X Y Z Talairach daemon Multi-modal parcellation, Glasser 

2016 

1 

 

 

7,136 -28 -70 46 aa Precuneus, BA19 Intraparietal area 1 

-32 -54 43 bb Parietal lobe, sub-gyral Lateral intraparietal dorsal area 

-47 -43 46 cc Inf. parietal lobule Intraparietal area 2 

2 

 

 

2,296 -3 -88 -4 dd Lingual gyrus, BA18 V1 

4 -89 5 ee 
Lingual gyrus, BA18 

V1 

3 2,040 50 -56 -13 ff Fusiform gyrus, BA37 Area PH 

4 1,416 -47 -57 -13 gg Fusiform gyrus, BA37 Area PH 

5 

 

1,304 -41 7 27 hh Inferior frontal gyrus, BA9 Area IFJp 

-45 -1 37 ii Precentral gyrus, BA6 Premotor eye field  

6 1,152 29 -70 45 jj Precuneus, BA7 IPS1 

7 

1,144 -5 15 49 kk Sup. frontal gyrus, BA6 Supplementary and cingulate eye fields 

8 15 49 ll Sup. frontal gyrus, BA6 Supplementary and cingulate eye fields 

3 17 46 mm Med. frontal gyrus Area 8BM 

8 816 -33 -2 52 nn Precentral gyrus, BA6 Frontal eye field 

 

Note. The total volume of each cluster is reported, as well as the individual foci within it which reached statistical significance.  

Individual foci are referenced by a single letter in figure 2 and main text. Individual foci are identified using anatomical labels 

from the parcellation of Glasser et. al. (2016) . To facilitate comparison with the existing literature the labels provided by the 

Talairach daemon (Lancaster et al., 2000) are also provided, including Brodmann cytological areas where also indicated. Some 

foci do not have a Brodmann area, because no such label was nearby. The minimum cluster size for this comparison was 712 

mm
3.

 

Table 4. Areas consistently activated in the simple generation comparison of visual imagery studies, whereby participants were 

instructed to imagine a common concrete object. 

Cluster 

number 

Volume 

(mm3) 

Focus co-ordinates (MNI) Reference Anatomical label 

X Y Z Talairach daemon Multi-modal parcellation, Glasser 

2016 

1 1,952 -9 11 54 aaa Med. frontal gyrus Supplementary and cingulate eye fields 

2 

1,944 

  

  

-47 -66 -14 bbb Fusiform gyrus Fusiform face complex 

-45 -59 -13 ccc Fusiform gyrus Area PH 

-62 -68 -10 ddd Mid. occipital gyrus Area PHT 

3 

1,240 

  

  

-30 -68 48 eee Precuneus Intraparietal area 1 

-28 -75 28 fff Temporal lobe, sub-gyral Intraparietal area 0 

-26 -77 40 ggg Precuneus Intraparietal sulcus 1 

4 
936 

  

-41 9 29 hhh Inf. frontal gyrus IFJp 

-43 21 24 iii Mid. frontal gyrus IFSp 

5 880 50 -56 -16 jjj Fusiform gyrus, BA37 Area PH 

 

Note. The total volume of each cluster is reported, as well as the individual foci within it which reached statistical significance.  

Individual foci are referenced by a single letter in figure 4 and main text. Individual foci are identified using anatomical labels 

from the parcellation of Glasser et. al. (2016) . To facilitate comparison with the existing literature the labels provided by the 

Talairach daemon (Lancaster et al., 2000) are also provided, including Brodmann cytological areas where also indicated. Some 

foci do not have a Brodmann area, because no such label was nearby. The minimum cluster size for this comparison was 840 

mm
3.
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Table 5. Areas consistently activated in the active baseline comparison of visual imagery studies, whereby participants were 

instructed to imagine a common concrete object.  

Cluster 

number 

Volume 

(mm3) 

Focus co-ordinates (MNI) Reference Anatomical label 

X Y Z Talairach daemon Multi-modal parcellation, Glasser 

2016 

1 

 

 

4,272 -28 -70 40 x1 Precuneus, BA19 Intraparietal area 1 

-28 -60 46 x2 Superior parietal lobule Intraparietal area 1 

-26 -72 24 x3 Temporal lobe, sub-gyral Intraparietal area 0 

-30 -52 36 x4 Parietal lobe, sub-gyral Area lateral intraparietal dorsal 

2 

 

 

1,312 28 4 58 x5 Mid.frontal gyrus Area 6 anterior 

30 -8 50 x6 Precentral gyrus, BA6 Area 6 anterior 

3 

1,296 -28 -2 52 x7 Mid. frontal gyrus Area 6 anterior 

-18 8 56 x8 Frontal Lobe, sub-gyral Area 6 anterior 

4 

1,288 16 -62 26 x9 Precuneus, BA31 Parieto-occipital sulcus area 2 

28 -68 40 x10 Precuneus Intra parietal sulcus1 

18 -70 32 x11 Cuneus Dorsal Transitional Visual Area 

5 1,256 -30 18 2 x12 Claustrum Frontal opercular area 4 

6 

 

1,072 -50 6 30 x13 Inferior frontal gyrus, BA9 Rostral area 6 

-40 2 28 x14 Precentral gyrus, BA6 Area IFJp 

7 792 34 22 0 x15 Insula, BA13 Anterior ventral insula area 

 

Note. The total volume of each cluster is reported, as well as the individual foci within it which reached statistical significance.  

Individual foci are referenced by a single letter in the figures and main text. Individual foci are fully identified using anatomical 

labels from the parcellation of Glasser et. al. (2016) .  To facilitate comparison with the existing literature the labels provided by 

the Talairach daemon (Lancaster et al., 2000) are also provided, including Brodmann cytological areas where also indicated. 

Some foci do not have a Brodmann area, because no such label was nearby. The minimum cluster size for this comparison was 

736 mm
3.
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Figure Legends 

 

Figure 1. Areas consistently activated in the overall comparison of visual imagery studies. A) A lateral view of the left and right 

hemispheres based on the mid-thickness cortical surface, halfway between the pial and white matter surfaces, which was 

released as part of the Human Connectome Project (see methods). The likelihood that a given area is consistently activated 

increases towards the yellow end of the red-yellow colour spectrum; absolute values are not provided as they reflect ALE scores 

rather than readily-interpretable probability values (Eickhoff et al., 2016). The mid-thickness semi-inflated template shows in 

single view areas of activation which would either not be visible simultaneously, or not visible at all – for example, the insula 

(marked by a white arrow) would normally be covered by the frontal, temporal and parietal opercula. This template used in all 

subsequent images. B) A lateral view of the left hemisphere, overlain with the 180 region-per hemisphere parcellation of Glasser 

et al. (2016), and individual foci reported in Table 2 projected as spheres of 5 mm diameter. Individual foci are green, with the 

exception of the focus in posterior 9-46v, the colour of which is changed to black to make it easier to see in part (C. The frequent 

proximity of foci areal boundaries, and the small size of these individual areas, is notable. C) Axial, sagittal and coronal sections 

volume-based images, using the 440 group average T1-weighted image (see methods). This template is used in all subsequent 

images. These slices are centred on the black focus in part (B), which lies in posterior 9-46v of the orbital and polar frontal cortex 

(E in Table 2). The axial and coronal sections show how activation extends deep into sulci, with the coronal section also showing 

the extent of activation around the insula.  

Figure 2. The left superior parietal lobe was activated in every visual imagery comparison; activation in the right hemisphere was 

always less extensive, and absent in the simple generation sub-group.  Lower-case letters refer to foci in Table 2. A) An anterior-

rostral view, from a medial aspect, of areas activated in the overall comparison. Activation extended rostrally across the superior 

parietal lobe, with further individual foci (green) in V1 (i, k), the supplementary and cingulate eye field (f) and posterior 24 prime 

(h). Premotor activation is also visible at the top of the image. The white box marks the area enlarged in section (B), the leftmost 

panel of which identifies the individual foci (black) in the medial intraparietal area (a), area PFm complex (b), and intraparietal 

area 0 (c). The panel to the right illustrates the 12 cortical areas in this region, based on the parcellation of Glasser et. al (2016), 

with areal colours corresponding to the colour of the accompanying text that giving their abbreviated names. Areal extents are 

those that are visible from the current viewing position. Most areas are defined and discussed in the main text, with the 

exceptions of PGs (Area PGs), AIP (anterior intraparietal area), LIPv (area lateral intraparietal ventral) and VIP (ventral 

intraparietal complex). C) A volume-based depiction of the same data, centred on IP1. The marked difference in the extent of 

consistent activation between the hemispheres is clearly visible, as is the medial activation of the supplementary and cingulate 

eye fields (axial section) and lateral activation of the frontal eye fields and anterior ventral insular (sagittal section) in the left 

hemisphere. 

Figure 3. Medial areas of consistent activation in the overall comparison and in the eyes-closed sub-group comparison. Single 

lower case letters refer to entries in Table 2, double lower case letters to entries in Table 3. A) A lateral medial view of the left 

hemisphere based on the overall comparison of visual imagery studies, showing individual foci (green) in V1 (i, k), the 

supplementary and cingulate eye field (f) and posterior 24 prime (h). B) A lateral medial view of the left hemisphere based on 

the eyes closed sub-group of visual imagery studies, showing individual foci  in V1 (dd) and the supplementary and cingulate eye 

field (kk). Compared to the overall group, activation encompasses similar areas but is less extensive. C) A lateral medial view of 

the right hemisphere in the eyes closed sub-group, showing individual foci in V1 (ee) and the supplementary and cingulate eye 

field (ll). D) The same view as shown in part (B) of the left hemisphere in the eyes closed comparison, with boundaries 

superimposed. The regions identified by white boxes are enlarged in panels “F” and “G”. E) Axial volume-based depictions of 
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activation in the overall comparison (top panel) and the eyes closed sub group (lower panel). F) An enlarged view of the occipital 

region and the five cortical areas within in it, based on the parcellation of Glasser et. al (2016), with areal colours corresponding 

to the colour of the accompanying text that giving their abbreviated names. DVT is the recently described dorsal transitional 

visual area. G) An enlarged view of the cingulate region and five cortical areas within it. These areas lie at the junction of four 

larger regions. Specifically, ventral area 24d (24dv) is part of the cingulate motor area, and SCEF part of the supplementary 

motor area. Area p32 prime (p32pr) is the most anterior part of the anterior cingulate and medial prefrontal cortex, of which 

area anterior 32 prime (a32pr) and 8BM are also components. Finally, the superior frontal language area (SFL) is part of the 

dorsolateral prefrontal cortex (Glasser et al., 2016). This diversity of nomenclature highlights the need for the greatest possible 

anatomical precision.  

Figure 4. Areas of consistent activation in the simple generation sub-group comparison, which illustrate the activation of 

temporal areas. The labels consisting of three lower case letters refer to entries in Table 4. A) An inferior view of the left and 

right hemispheres, with individual foci in area PHT (PHT, ddd), area PH (PH, ccc, jjj) and the fusiform face complex area (FFC, 

bbb) and intraparietal area 0 (IP0, fff). B) From the same viewing angle, the cortical borders illustrated and the area expanded in 

“C”. C) An enlarged view of the left inferior temporal lobe, showing four cortical areas; the areal colours in the right panel 

correspond to the colours in which the accompanying abbreviated names are written. Activation in the simple generation sub-

group extends slightly into the FFC, but did not in any other comparison; for all other comparisons, the most consistent area of 

activation was area PH. The activation in area PHT is part of the cluster shown by the heat-map, but has been projected to the 

nearest cortical surface with which the activation is not contiguous. D) Axial and coronal volume-based depictions of activation 

baseline sub-group comparison, centred on the fusiform face complex. These illustrate how the activation might be readily, but 

inaccurately, interpreted as being in the fusiform face complex. 

Figure 5. Areas of consistent activation in the active baseline sub-group comparison, which illustrate the typical activation of 

premotor areas. The labels consisting of a numeral and the “x” prefix refer to entries in Table 5 A) An anterior-posterior medial 

view of the left and right hemispheres, with individual foci in area 6 anterior (6a; x5, x6, x7, x8), area IFJp (IFJp; x14), rostral area 

6 (6r, X13), area lateral intraparietal dorsal (LIPd, x4), intraparietal area 1 (IP1, x1, x2), and intraparietal sulcus 1 (IPS1, x10). B) 

From the same viewing angle, the cortical borders illustrated and the area expanded in “C”. C) An enlarged view of centred on 

the inferior frontal gyrus showing nine cortical areas; the areal colours in the right panel correspond to the colours in which the 

accompanying abbreviated names are written, with underlining indicating areas which are part of larger anatomical regions. 

Specifically, 6ma is part of the supplementary motor area, 6a and FEF are parts of the superior premotor cortex, whilst 6r, 6v 

and PEF are part of inferior premotor cortex, from which they are divided by area 55b. Area55b is part of the premotor cortex, 

but anatomically and functionally distinct from its neighbours (Glasser et al., 2016). Finally, i6-8 is part of the dorsolateral 

prefrontal cortex and IFJa and IFJp are part of the inferior frontal cortex. D) Axial and coronal volume-based depictions of 

activation baseline sub-group comparison.  
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