A non-exhaustive list of publications that have used TRENDY data.

  1. Weng, E. et al., Modeling demographic-driven vegetation dynamics and ecosystem biogeochemical cycling in NASA GISS’s Earth system model (ModelE-BiomeE v.1.0), GMD, 15, 8153-8180, 2022.
  2. Byrne, B et al., Multi-year observations reveal a larger than expected autumn respiration signal across northeast Eurasia, Biogeosciences, 19(19), 4779-4799. Doi: 10.5194/bg-19-4779-2022, 2022.
  3. Yu, Z et al., Forest expansion dominates China’s land carbon sink since 1980, Nat. Comms., 13(1). Doi: 10.1038/s41467-022-32961-2, 2022.
  4. Murray-Tortarolo, G et al, A Process-Model Perspective on Recent Changes in the Carbon Cycle of North America, JGR-B, 127(9). Doi: 10.1029/2022JG006904, 2022.
  5. O’Sullivan, M et al., Process-oriented analysis of dominant sources of uncertainty in the land carbon sink, Nat. Comms, 13(1). Doi: 10.1038/s41467-022-32416-8, 2022.
  6. Wang, K et al., Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability, Nat. Comms, 13(1). Doi: 10.1038/s41467-022-31175-w, 2022.
  7. Crisp, D et al., How Well Do We Understand the Land-Ocean-Atmosphere Carbon Cycle? Reviews of Geophysics, 60(2). Doi: 10.1029/2021RG000736, 2022.
  8. Seiler, C et al., Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink? Journal of Advances in Modeling Earth Systems, 14(5). Doi: 10.1029/2021MS002946, 2022.
  9. Lawal, S et al., Investigating the response of leaf area index to droughts in southern African vegetation using observations and model simulations, Hydrology and Earth System Sciences, 26(8), 2045-2071. Doi: 10.5194/hess-26-2045-2022, 2022.
  10. Friedlingstein, P et al., Global Carbon Budget 2021, ESSD, 14(4), pp.1917-2005. Doi: 10.5194/essd-14-1917-2022, 2022.
  11. Yang, RQ et al., Divergent historical GPP trends among state-of-the-art multi-model simulations and satellite-based products, ESD, 13(2), 833-849. Doi: 10.5194/esd-13-833-2022, 2022.
  12. Li, SH et al., Deficiencies of Phenology Models in Simulating Spatial and Temporal Variations in Temperate Spring Leaf Phenology, JGR-B, DOI: 10.1029/2021JG006421, 2022.
  13. Wild, B et al., VODCA2GPP-a new, global, long-term (1988-2020) gross primary production dataset from microwave remote sensing, Earth System Science Data, 14(3), pp1063-1085, DOI: 10.5194/essd-14-1063-2022, 2022.
  14. Liao, CJ et al., Disentangling land model uncertainty via Matrix-based Ensemble Model Inter-comparison Platform (MEMIP), Ecological Processes, 11(1) DOI: 10.1186/s13717-021-00356-8, 2022.
  15. Kondo, M et al., Are Land-Use Change Emissions in Southeast Asia Decreasing or Increasing, Global Biogeochemical Cycles, 36(1), DOI: 10.1029/2020GB006909, 2022.
  16. Liu, JY et al., Response of global land evapotranspiration to climate change, elevated CO2, and land use change, Agri. Forest. Met., 311, DOI: 10.1016/j.agrformet.2021.108663, 2021.
  17. O’Sullivan, M et al., Aerosol-light interactions reduce the carbon budget imbalance, Environmental Research Letters, 16(12), DOI:10.1088/1748-9326/ac3b77, 2021.
  18. Teckentrup, L et al., Assessing the representation of the Australian carbon cycle in global vegetation models, Biogeosciences, 18(20), pp.5639-5668, doi: 10.5194/bg-18-5639-2021.
  19. Bastos, A et al., Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019, Earth System Dynamics, 12(4), pp 1015-1035, doi: 10.5194/esd-12-1015-2021, 2021.
  20. Wang, SH et al., Response to Comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”, Science 373 (6562), DOI:10.1126/science.abg7484, 2021.
  21. Winkler, AJ et al., Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2, Biogeosciences, 18(17), pp. 4985-5010. DOI10.5194/bg-18-4985-2021.
  22. MacBean, N et al., Dynamic global vegetation models underestimate net CO2 flux mean and inter-annual variability in dryland ecosystems, Environmental Research Letters, 16(9), doi: 10.1088/1748-9326/ac1a38, 2021.
  23. Gampe, D., et al., Increasing impact of warm droughts on northern ecosystem productivity over recent decades, Nature Climate Change, DOI 10.1038/s41558-021-01112-8, 2021.
  24. Obermeier, WA et al., Modelled land use and land cover change emissions – a spatio-temporal comparison of different approaches, Earth System Dynamics, 12(2), p635-670. DOI 10.5194/esd-12-635-2021, 2021.
  25. Gonsamo, A et al., Greening drylands despite warming consistent with carbon dioxide fertilization effect, Global Change Biology, 27(14), p 3336-3349, DOI 10.1111/gcb.15658, 2021.
  26. Chen, ZC et al., Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biosphere models, Atmospheric Chemistry and Physics, 21(9), p6663-6680, DOI 10.5194/acp-21-6663-2021, 2021.
  27. Chen, ZC et al., Five years of variability in the global carbon cycle: comparing an estimate from the Orbiting Carbon Observatory-2 and process-based models, Environmental Research Letters, 16(5), DOI 10.1088/1748-9326/abfac1, 2021.
  28. He, W., et al., Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America, Agric. Forest Met. DOI 10.1016/j.agrformet.2020.108292, 2021.
  29. Wang, S., et al., Recent decline of CO2 fertilization effects on vegetation photosynthesis, Science, 370(6522), 1295-1300, 2020.
  30. Friedlingstein, P., et al., Global Carbon Budget 2020, Earth System Science Data, 12(4), pp3269-3340, 2020.
  31. O’Sullivan, M., et al., Climate-Driven Variability and Trends in Plant Productivity Over Recent Decades Based on Three Global Products, Global Biogeochemical Cycles, 34(12), 2020.
  32. Bastos, A., et al., Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018, PTRS-B, 375(1810), 2020.
  33. Collalti, A., et al., Forest production efficiency increases with growth temperature, Nature Communications, 11(1) 2020.
  34. Wang, K., et al., Causes of slowing-down seasonal CO2 amplitude at Mauna Loa, Global Change Biology, 26(8), pp4462-4477, 2020.
  35. Bastos, A., et al., Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity, Science Advances, 6(24), 2020.
  36. Yang, H., et al., Comparison of forest above-ground biomass from dynamic global vegetation models with spatially explicit remotely sensed observation-based estimates, Global Change Biology, 26(7), pp3997-4012, 2020.
  37. Yun, J., et al. Enhanced regional terrestrial carbon uptake over Korea revealed by atmospheric CO2 measurements from 1999 to 2017, Global Change Biology,, 2020.
  38. Pan, S., et al., Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modelling, Hydrology and Earth System Sciences, 24(3), pp1485-1509, 2020.
  39. Jung, M., et al., Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17(5), p1343-1365, 2020.
  40. Forzieri, G. et al., Increased control of vegetation on global terrestrial energy fluxes, Nature Climate Change,, 2020.
  41. Bastos, A., et al., Sources of Uncertainty in Regional and Global Terrestrial CO2 Exchange Estimates, GBC, 34(2), 2020.
  42. Kondo, M., State of the science in reconciling top-down and bottom-up approaches for terrestrial CO2 budget, Global Change Biology, 26(3), 1068-1084, 2020.
  43. Piao, S et al., Interannual variation of terrestrial carbon cycle: Issues and perspectives, Global Change Biology, 26(1), 300-318, 2020.
  44. Friedlingstein, P., et al., Global Carbon Budget 2019, ESSD, 11(4), 1783-1838, 2019.
  45. Bastos, A., et al., Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange, ACP, 19(19), p12361-12375, 2019.
  46. Chen, W. et al., Negative extreme events in gross primary productivity and their drivers in China during the past three decades, Agricultural and Forest Meteorology, 275, p47-58, 2019.
  47. Yuan, W., et al., Increased atmospheric vapor pressure deficit reduces global vegetation growth, Science Advances, 5(8), 2019.
  48. Fernandez-Martinez, M. et al., Global trends in carbon sinks and their relationships with CO2and temperature, Nature Climate Change, 9 (1), DOI: 10.1038/s41558-018-0367-7, 2019.
  49. Le Quéré, C. et al., Global Carbon Budget 2018, Earth Syst. Sci. Data, 10, 2141-2194, DOI: 10.5194/essd-10-2141-2018, 2018.
  50. Bastos, A. et al., Impact of the 2015/2016 El Nino on the terrestrial carbon cycle constrained by bottom-up and top-down approaches, PTRS, 373(1760), DOI: 10.1098/rstb.2017.0304, 2018.
  51. Buermann, W., et al., Widespread seasonal compensation effects of spring warming on northern plant productivity, Nature, 562(7725), doi: 10.1038/s41586-018-05557-7, 2018.
  52. Grassi, G., et al., Reconciling global model estimates and country reporting of anthropogenic forest CO2sinks, Nature Climate Change, 8(10), doi: 10.1038/s41558-018-0283-x, 2018
  53. Humphrey, V. et al., Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage, Nature, 560, pp 628-631,, 2018.
  54. Piao, S., et al., Lower land-use emissions responsible for increased net land carbon sink during the slow warming period, Nature Geoscience,, 2018.
  55. Wang, J., et al., Contrasting interannual atmospheric CO2variabilities and their terrestrial mechanisms for two types of El Ninos, Atmospheric Chemistry and Physics, 18 (14), pp 10333-10345, DOI: 10.5194/acp-18-10333-2018
  56. Forzieri, G., et al., Evaluating the Interplay Between Biophysical Processes and Leaf Area Changes in Land Surface Models, Journal of Advances in Modeling Earth Systems, 10(5), pp 1102-1126, DOI: 10.1002/2018MS001284, 2018.
  57. Zhou, S. et al., Sources of uncertainty in modeled land carbon storage within and across three MIPs: Diagnosis with three new techniques, Journal of Climate, 31(7), p2833-2851, 2018.
  58. Kondo, M et al., Land use change and El Nino-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia, Nature Communications, 9, doi: 10.1038/s41467-018-03374-x, 2018.
  59. Le Quéré et al., Global Carbon Budget 2017, Earth Syst. Sci. Data, 10(1), 405-448, 2018.
  60. Murray-Tortarolo et al., The decreasing range between dry- and wet- season precipitation over land and its effect on vegetation primary productivity, PLOS ONE, 12(12), doi:10.1371/journal.pone.1090304
  61. Piao S, Liu Z, Wang Y, Ciais P, Yao Y, Peng S, Chevallier F, Friedlingstein P, Janssens IA, Peñuelas J, et al(2018). On the causes of trends in the seasonal amplitude of atmospheric CO2. Glob Chang Biol, 24(2), 608-616.
  62. Arneth et al., Historical carbon dioxide emissions due to land use changes possibly larger than assumed, Nature Geosciences, NATURE GEOSCIENCE, 10(2), 79.
  63. Jung, M. et al., Neutral-Phased El Niño-Southern Oscillation drives Southeast Asian CO2 uptake in the 2000s, Nature, 541(7638), pp 516-520.
  64. Zhang, Y. et al., Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production, Scientific Reports, 6, doi:10.1038/srep39748.
  65. Keenan, T.F., I. C. Prentice, J.G. Canadell, C.A. Williams, H. Wang, M. Raupach, G.J. Collatz, Nature Communications, doi: 10.1038/ncomms13428, 2016.
  66. Zhao, F. et al., Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis, Biogeosciences, 13, 5121-5137, 2016.
  67. Le Quéré et al., Global Carbon Budget 2016, Earth Syst. Sci. Data, 8(2), 605-649, 2016.
  68. Cervarich, M. et al., The terrestrial carbon budget of South and Southeast Asia, Environmental Research Letters, 11(10), 2016.
  69. Koven, C. Role of CO2, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis, Biogeosciences, 13(17), 5121, 2016.
  70. Calle L. et al.,Regional carbon fluxes from land use and land cover change in Asia, 1980–2009, ERL, 11(7), 2016.
  71. Zhu, Z. et al., Greening of the Earth and its drivers, Nature Climate Change, 6, 791–795 (2016), doi:10.1038/nclimate3004
  72. Murray-Tortarolo, G., et al., The carbon cycle in Mexico: past, present and future of C stocks and fluxes, Biogeosciences1 (2016): 223-238.
  73. Murray-Tortarolo, G., et al., Changes in dry season intensity are the main driver of global NPP trends, GRL, 43 (6), 2632-2639, (2016).
  74. Tian, H. et al., The terrestrial biosphere as a net source of greenhouse gases to the atmosphere, Nature, 531, 225-228, doi:10.1038/nature16946, (2016)
  75. Osbourne, JM. et al., Reconciling precipitation and runoff: Observed hydrological change in the midlatitudes, Hydromet, 16(6), 2403-2420, 2015.
  76. Schimel, D., B. B. Stephens, J. B. Fisher, Effect of increasing CO2on the terrestrial carbon cycle, PNAS, 112(2), 436-441, 2015.
  77. Anav, A., P. Friedlingstein, C. Beer, P. Ciais, A. Harper, C. Jones, G. Murray-Tortarolo, P. Peylin, S. Piao, S. Sitch, N. Viovy, A. Wiltshire, M. Zhao, Spatio-temporal patterns of terrestrial gross primary production: a review, Reviews of Geophysics, 53(3), 785-818, 2015.
  78. Yang, H et al., Multi-criteria evaluation of discharge simulation in Dynamic Global Vegetation Models (DGVMs),Water Resource Research, JGR, 120(15), 7488-7505
  79. Le Quéré, C., Moriarty, R., Andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., et al. (2015). Global Carbon Budget 2015.Earth System Science Data,7(2), 349-396. doi:10.5194/essd-7-349-2015.
  80. Le Quéré et al., Global Carbon Budget 2014, Earth Syst. Sci. Data, 7, 47-85, doi:10.5194/essd-7-47-2015.
  81. Ahlström, A., M. Raupach, B. Smith, Schurgers, A. Arneth, M. Jung, M. Reichstein, P. Friedlingstein, A. K. Jain, E. Kato, B. Poulter, S. Sitch, B. Stocker, N. Viovy, Y. -P. Wang, A. Wiltshire, N. Zeng, The dominant role of semi-arid ecosystems in the trend and variability of the terrestrial CO2sink, Science, 348 (6237), 895-899.
  82. Frank, D.C., B. Poulter, M.Saurer, J. Esper, C. Huntingford, G. Helle, K. Treydte, N.E. Zimmermann, G.H. Schleser, A. Ahlström, P. Ciais, P. Friedlingstein, S. Levis, M. Lomas, S. Sitch, N. Viovy, L. Andreu-Hayles, Z. Bednarz, F. Berninger, T. Boettger, C.M. D‘Alessandro, V. Daux, M. Filot, M. Grabner, E. Gutierrez, M. Haupt, E. Hilasvuori, H. Jungner, M. Kalela-Brundin, M. Krapiec, M. Leuenberger, N.J. Loader, H. Marah, V. Masson-Delmotte, A. Pazdur, S. Pawelczyk, M. Pierre, O. Planells, R. Pukiene, C.E. Reynolds-Henne, K.T. Rinne, A. Saracino, E. Sonninen, M. Stievenard, V.R. Switsur, M. Szczepanek, E. Szychowska-Krapiec, L. Todaro, J.S. Waterhouse, M. Weigl (2015) Water use efficiency and transpiration across European forests during the Anthropocene, Nature Climate Change, doi: 10.1038/NCLIMATE2614
  83. Sitch, S, P. Friedlingstein, N. Gruber, S. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G. Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin, S. Piao, C. Le Quéré, B. Smith, Z. Zhu, R. Myneni Recent trends and drivers of regional sources and sinks of carbon dioxide, Biogeosciences, 12, 653-679, 2015.
  84. Peng, S., P. Ciais, F. Chevallier, P. Peylin, P. Cadule, S. Sitch, S. Piao, A. Ahlström, C. Huntingford, P. Levy, X. Li, Y. Liu, M. Lomas, B. Poulter, N. Viovy, T. Wang, X. Wang, S. Zaehle, N. Zeng, F. Zhao, Hongfang Zhao, Benchmarking the seasonal cycle of CO2fluxes simulated by terrestrial ecosystem models, Global Biogeochemical Cycles, 29(1), 46-64, 2015.
  85. King, A. W. et al.,North America’s net terrestrial CO2exchange with the atmosphere 1990–2009, Biogeosciences, 12, 399–414, 2015.
  86. Piao, S., H. Nan, C. Huntingford, P. Ciais, P. Friedlingstein, S. Sitch, S. Peng, A. Ahlström, J.G. Canadell, N. Cong, S. Levis, P.E. Levy, L. Liu, M.R. Lomas, J. Mao, R.B. Myneni, P. Peylin, B. Poulter, X. Shi, G. Yin, N. Viovy, T. Wang, X. Wang, S. Zaehle, N. Zeng, Z. Zeng, A. Chen, Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity, Nature Communications, 5:5018, DOI: 10.1038/ncomms6018
  87. Le Quéré et al., (2014) Global carbon budget 2013, Earth Syst. Sci. Data., 6, 235-263,
  88. Parazoo, N.C., Bowman, K., Fisher, J.B., Frankenberg, C., Jones, D.B.A., Cescatti, A., Pérez Priego, Ó, Wohlfahrt, G., Montagnani, L. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. Global Change Biology, 20(10): 3103- 3121, 2014.
  89. Valentini, R., A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti1, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes (2014) A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities, Biogeosciences, 11, 381-407, 2014.
  90. Poulter, B., D. Frank, P. Ciais, R. Myneni, N. Andela, J. Bi, G. Broquet, J. G. Canadell, F. Chevallier, Y.Y. Liu, S.W. Running, S. Sitch and G.R. van der Werf (2014) Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle, Nature, doi:10.1038/nature13376, 2014.
  91. Murray-Tortarolo, G., A. Anav, P. Friedlingstein, S. Sitch, S. Piao, Z. Zhu, B. Poulter, S. Zaehle, A. Ahlstrom, M. Lomas, S. Levis, N. Viovy, N. Zeng. Evaluation of DGVMs in reproducing satellite derived LAI over the Northern Hemisphere. Part I: Uncoupled DGVMs, Remote Sens., 5(10), 4819-4838; doi:10.3390/rs5104819, 2013.
  92. Haverd, V. et al., The Australian terrestrial carbon budget, Biogeosciences, 10, 851-869, 2013.
  93. Patra, P. K. et al., The carbon budget of South Asia, Biogeosciences, 10, 513-527, 2013.
  94. Le Quéré et al., 2013, The global carbon budget 1959–2011, Earth Syst. Sci. Data, 5, 165–185, 2013,
  95. Fisher, J.B., M. Sikka, S. Sitch, P. Ciais, B. Poulter, D. Galbraith, J.E. Lee, C. Huntingford, N. Viovy, N. Zeng, A. Ahlström, M.R. Lomas, P.E. Levy, C. Frankenberg, S. Saatchi, Y. Mahli, African tropical rainforest net carbondioxide fluxes in the twentieth century, Phil Trans Roy Soc, B, 368, 1625, doi: 10.1098/rstb.2012.0376, 2013
  96. Piao SL, S Sitch, P Ciais, P Friedlingstein, P Peylin, XH Wang, A Ahlström, A Anav, JG Canadell, C Huntingford, M Jung, S Levis, PE Levy, JS Li, X Lin, MR Lomas, M Lu, YQ Luo, YC Ma, RB Myneni, B Poulter, ZZ Sun, T Wang, N Viovy, S Zaehle, N Zeng. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 Global Change Biology. 19(7), 2117-2132.
  97. Gloor, M., L. Gatti, R. Brienen, T. R. Feldpausch, O. L. Phillips, J. Miller, J. P. Ometto, H. Rocha, T. Baker, B. de Jong, R. A. Houghton, Y. Malhi, L. E. O. C. Aragão, J.-L. Guyot, K. Zhao, R. Jackson, P. Peylin, S. Sitch, B. Poulter, M. Lomas, S. Zaehle, C. Huntingford, P. Levy, and J. Lloyd, The carbon balance of South America: a review of the status, decadal trends and main determinants,Biogeosciences, 9, 5407-5430, 2012.
  98. Dolman, A.J. et al., An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods, Biogeosciences, 9, 5323-5340, 2012.
  99. McGuire, A.D. et al., An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions, Biogeosciences, 9, 3185-3204, 2012.
  100. Piao, S.L., A. Ito, S. G. Li, Y. Huang, P. Ciais, X. H. Wang, S. S. Peng, H. J. Nan, C. Zhao, A. Ahlström, R. J. Andres, F. Chevallier, J. Y. Fang, J. Hartmann, C. Huntingford, S. Jeong, S. Levis, P. E. Levy, J. S. Li, M. R. Lomas, J. F. Mao, E. Mayorga, A. Mohammat, H. Muraoka, C. H. Peng, P. Peylin, B. Poulter, Z. H. Shen, X. Shi, S. Sitch, S. Tao, H. Q. Tian, X. P. Wu, M. Xu, G. R. Yu, N. Viovy, S. Zaehle, N. Zeng, and B. Zhu, The carbon budget of terrestrial ecosystems in East Asia over the last two decades,Biogeosciences, 9, 3571-3586, 2012
  101. Le Quere C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, et al. (2009) Trends in the sources and sinks of carbon dioxide, Nature Geosciences2(12): 831-836