Zahid Hussain passes his viva!

Zahid Hussain

Congratulations to PGR Zahid Hussain, who has passed his viva. His thesis was titled ‘Metal-organic Framework (MOFs) Derived Nanocomposites: Synthesis and Applications in Photocatalysis’. During his time with the CDT, Zahid published 11 papers, plus an English-to-Urdu translation of Seven Brief Lessons on Physics by Carlo Rovelli. Zahid now works as a postdoctoral researcher at Technical University of Munich (TUM).

Zahid reflects on his experience of undertaking a PhD as part of the CDT:

I believe that life is a journey from nowhere to nowhere. The pleasure of living is in the process itself, and destinations only milestones leading us to the next journey. On this path, we meet all kinds of people. While some settle down on the way, others continue to live nomadic academic lives. As a foreign student, I identify myself with migratory birds, who leave behind many relationships, friendships, cultural and sensory experiences of material and non-material things, seeking better learning and living conditions. In the quest for knowledge and professional opportunities, the continuous struggle to assimilate into a new environment provides us with great learning opportunities, which broaden our mental horizons and deepen the understanding of life indeed.

The last 4 years of my life at the University of Exeter have been full of happenings, professionally and personally. I met some wonderful people, on-campus and off-campus. Many interactions turned into enduring friendships. First of all, I got a great sense of freedom in working with my PhD supervisors Dr Yongde Xia and Prof Yanqiu Zhu, which helped me to grow as an independent researcher. Also, my supportive colleagues and friendly environment of Functional Materials Laboratory (Lab 08) made the overall PhD experience very joyful and productive.

The doctoral training program (CDT) gave me the confidence to think independently and make my own research decisions. During this time, I developed some fruitful collaborations, especially with Dr Asif Tahir (Penryn campus), Prof. Roland Fischer (TU Munich), Prof. Freek Kapteijn (TU Delft, NL) and Prof. Ovidiu Ersen (University of Strasbourg, France). The work I did in these collaborations, greatly contributed to shaping my PhD project.

Along with the PhD, the last 4 years have been the most important time of my life. I married my partner Anna-Maria and became a parent of our lovely daughter Selma as if a sailboat navigating without a compass saw the shore and anchored. Countless moments of joy, peace and contentment, as well as many sleepless nights of childcare, frustrating days, lockdown months of Covid-19 and moving back and forth from Exeter to Munich, all made this time substantial.

We wish Zahid the best of luck with his future.

Zahid has co-authored the following publications:

2021

2020

2019

2018

Selected outreach activities

Zahid has translated a book Seven Brief Lessons on Physics by Carlo Rovelli from English to Urdu. It has recently published by the Mashal Books, LahorePakistan.

Zahid has presented at the following conferences:

  • M. Z. Hussain, Y. Xia; Presentation: Bi-MOF derived nanocomposites_applications in photocatalysis, GWPore: Conference on Porous Materials for Energy, Environment and Healthcare Applications, U.K. February 2021. (2nd best presentation award) 
  • M. Z. Hussain, R. A. Fischer, Y. Zhu, Y. Xia; Poster: Making heterostructures with water: Role of temperature and water steam in MOF derived TiO2/CuOx/Cu/C nanocomposites, Euromof-20193rd International Conference on MOFs and Porous Polymers, Paris, France. October 2019.
  • M. Z. Hussain, Y. Zhu, Y. Xia; Presentation: MOF derived photocatalysts for high efficient solar-light-driven H2 evolution. MCEC 2019, Conference on Materials for Clean Energy, NPL, London, U.K.  April 2019.
  • M. Z. Hussain, R. A. Fischer, Y. Zhu, Y. Xia; Presentation: MOF derived bimetal oxide/carbon composites: Synthesis and photocatalytic applications, 6th International Conference on Multifunctional, Hybrid and Nanomaterials, Sitges, Spain, March 2019.
  • M. Z. Hussain, R. A. Fischer, Y. Zhu, Y. Xia; Poster: MOF derived TiO2/C nanocomposites for photocatalysis, ICS Winter School on Catalysis, Innovative Catalysis and Sustainability Scientific and Socio-Economic Aspects, Turin, Italy. January 2019.
  • M. Z. Hussain, Y. Zhu, Y. Xia; Poster: MOF derivatives for visible-light-driven photocatalytic applications, 41st Annual Meeting of the British Zeolite Association (BZA), Cumbria, Ambleside, U.K. July 2018.
  • M. Z. Hussain, Y. Zhu, Y. Xia; Poster: Black porous ZnO@C nanocomposites derived from MOF-5 for highly efficient photocatalytic application, RAMS-Recent Appointees in Materials Science, University of Exeter, U.K. September 2017.
  • M. Z. Hussain, Y. Zhu, Y. Xia; Poster: MOF-5 derived ZnO/C nanocomposites for adsorption and photodegradation of organic pollutants, NIM Conference on Nanostructured Functional Materials for Sustainable Energy Provision, Munich, Germany. July 2017.

New Publication: An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)

Zahid Hussain

Congratulations to Zahid Hussain for his new paper, ‘An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)’ , recently published in Microporous and Mesoporous Materials.

Zahid explains the paper’s findings:

Metal-organic frameworks (MOFs) are exceptionally porous and highly crystalline coordination polymers. Since the late 1990s, MOFs have been intensively investigated for a large variety of applications such as gas separation and storage, energy storage and conversion, batteries, fuel cells, optoelectronics, sensing, supercapacitors, drug delivery and catalysis. However, many key questions need to be answered to optimize the synthesis of these materials for industrial-scale applications. In this study, we present an in-situ investigation of thermal conversion of a titanium-based MOF, NH2-MIL-125(Ti) under an inert atmosphere. In situ thermal analysis of NH2-MIL-125(Ti) reveals the presence of 3 defined stages of thermal transformation in the following order: phase-pure, highly porous, and crystalline MOF → intermediate amorphous phase without accessible porosity → recrystallized porous phase. The three stages occur from room temperature till 300 °C, between 350 and 550 °C and above ∼550 °C respectively. The derived disc-like particles exhibit a 35% volume shrinkage compared to the pristine MOF precursor. Highly crystalline N and/or C self-doped TiO2 nanoparticles are homogeneously distributed in the porous carbon matrix. The original 3D tetragonal disc-like morphology of the NH2-MIL-125(Ti) remains preserved in derived N and/or C doped TiO2/C composites. This study will provide an in-depth understanding of the thermal conversion behaviour of MOFs to rationally select and design the derived composites for the relevant applications.

The crystalline structure of Ti-MOF, NH2-MIL-125(Ti) and mechanism of its thermal decomposition.

 

 

We would also like to congratulate Zahid on passing his viva, and wish him the best of luck for his future career.

Porous ZnO/Carbon nanocomposites derived from metal-organic frameworks for highly efficient photocatalytic applications – A correlational study

Congratulations to XM² PGR student (third year) Mian Zahid Hussain for his latest publication on “Porous ZnO/Carbon nanocomposites derived from metal-organic frameworks for highly efficient photocatalytic applications – A correlational study” in Carbon journal. Abstract below.

Abstract

Porous ZnO/C nanocomposites derived from 3 different Zinc based metal-organic frameworks (MOFs) including MOF-5, MOF-74 and ZIF-8, were prepared at high temperature under water-steam atmosphere and their performances in photocatalytic H2 evolution reaction (HER) and photodegradation of organic dye pollutants were evaluated. The formation mechanism from MOF precursors, the structural properties, morphologies, compositions and textural properties of the derived ZnO/C composites were fully investigated based on different characterization techniques and the correlation between the precursors and the derived composites was discussed. It is evident that MOF precursors determine the crystalline structures, doping profiles, thermal stabilities and metal oxide-carbon weight percentage ratios of the resulting composites.

The correlation between MOFs and their derived nanocomposites indicates that different parameters play unalike roles in photocatalytic performances. The desired properties can be tuned by selecting appropriate MOF precursors. MOF-5 derived porous ZnO/C nanocomposite not only exhibits the highest photocatalytic dye degradation activity under visible light among these MOFs, but also outperforms those derived from MOF-74 and ZIF-8 up to 9 and 4 times in photocatalytic HER respectively. This study offers simple and environmentally friendly approaches to further develop new homogeneously dispersed functional metal oxide/carbon composites for various energy and environment-related applications.

 

Zahid has previously published on ZnO nanocomposites studies, and is currently working on a translation of Carlo Rovelli’s book “Seven Brief Lessons on Physics” into Urdu.