Iraklis and Hywel have recently published a new paper Good and bad events: combining network-based event detection with sentiment analysis in Social Network Analysis and Mining.
The huge volume and velocity of media content published on the Web presents a substantial challenge to human analysts. In prior work, we developed a system (network event detection, NED) to assist analysts by detecting events within high-volume news streams in real time. NED can process a heterogeneous stream of news articles or social media user posts, combining text mining and network analysis to detect breaking news stories and generate an easy-to-understand event summary. In this paper, we expand the NED event detection and summarisation approach in two ways. First, we introduce a new approach to named entity disambiguation for tweets, which contain minimal information due to brevity. Second, we apply sentiment analysis techniques to documents associated with a detected event to characterise the event as either broadly ‘positive’ or ‘negative’ based on media portrayal. Our expansion focuses on Twitter streams since Twitter has become an important news dissemination platform and is often the site where emerging events are first seen. To test the extended methodology, we apply it here to three data sets related to political elections in the UK and the USA. The addition of sentiment analysis to the NED event detection methodology improves the insight gained by the user by allowing quick evaluation of the perceived impact of an event. This approach may have potential applications in domains where public sentiment is relevant to decision-making around events, such as financial markets and politics.